
CSE 312

Foundations of Computing II
Lecture 19: More Joint Distributions

Tail Bounds part I
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Midterm

Average:  82.48      Standard Deviation:  17.82   (Median:  87.25) 

• Solutions available on Canvas Pages
• Regrade requests only until Wednesday
– Look at solutions and then check if a regrade requests is necessary
– Graders have bounded resources
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Scores 90+ 80s 70s 60s 50s < 50

# of students 89 51 21 11 10 16



Review Conditional Expectation
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Definition. Let 𝑋 be a discrete random variable then the conditional 
expectation of 𝑋	given event 𝐴 is

𝔼 𝑋	 𝐴] = '
!	 ∈	$!

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴)

Notes:
• Can be phrased as a “random variable version”

𝔼 𝑋 	𝑌 = 𝑦]

• Linearity of expectation still applies here
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐	 𝐴] = 𝑎	𝔼 𝑋	 𝐴] + 𝑏	𝔼 𝑌	 𝐴] + 𝑐



Review Law of Total Expectation
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴%, … , 𝐴& partition the sample space. Then,

𝔼[𝑋] ='
'(%

&

𝔼 𝑋	 𝐴' ⋅ 𝑃(𝐴')

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝔼[𝑋] = '
)∈$"

𝔼 𝑋	 𝑌 = 𝑦 ⋅ 𝑃(𝑌 = 𝑦)



Agenda

• Law of Total Expectation (LTE)
– Another LTE example
– Conditional expectation and LTE for continuous RVs

• Tail Bounds
– Markov’s Inequality
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Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step 𝑖 
your computer will fail with probability 𝑞 (independently of other steps). 
Let 𝑋 be the number of steps it takes your computer to fail. 
What is 𝔼[𝑋]?

What kind of RV is 𝑋?
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Review Geometric RV

• Example: Biased coin:
 𝑃 𝐻 = 𝑞 > 0     
 𝑃(𝑇) = 1 − 𝑞

• 𝑋 = # of coin flips until first head
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𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞 …

1 − 𝑞 *𝑞
1 − 𝑞 +𝑞

1 − 𝑞 𝑞
𝑞

𝔼 𝑋 ='
'(%

,

𝑖 ⋅ 𝑃 𝑋 = 𝑖 ='
'(%

,

𝑖 ⋅ 𝑞 1 − 𝑞 '-%	 Converges, so 𝔼 𝑋  is finite

Can calculate this directly …

𝑃(𝑋 = 𝑖) = 𝑞 1 − 𝑞 '-%



Direct Analysis – Expectation of Geometric RV
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𝔼 𝑋 ='
'(%

,

𝑖 ⋅ 𝑞 1 − 𝑞 '-% = 𝑞	'
'(%

,

𝑖 1 − 𝑞 '-% Converges, so 𝔼 𝑋  is finite

𝔼 𝑋 = 𝑞	[1 + 2 1 − 𝑞 + 3 1 − 𝑞 * +⋯	 + 𝑖 1 − 𝑞 '-% +⋯]

1 − 𝑞 𝔼 𝑋 = 𝑞[	 1 − 𝑞 + 2 1 − 𝑞 * +⋯+ (𝑖 − 1) 1 − 𝑞 '-% +⋯]

So

Subtracting gives

Then

𝑞	𝔼 𝑋 = 𝑞[	1 + 1 − 𝑞 	+ 1 − 𝑞 * +⋯	 + 1 − 𝑞 '-% +⋯]

𝑞	𝔼 𝑋 = 𝑞
1

1 − 1 − 𝑞
= 1 since for 0 < 𝑟 < 1,	 .

𝒊"𝟎

$

𝒓𝒊 =
𝟏

𝟏 − 𝒓

Therefore  𝔼 𝑋 = 1/𝑞



Same examples with the LTE

Suppose your computer operates in a sequence of steps, and that at each step 𝑖 
your computer will fail with probability 𝑞 (independently of other steps). 
Let 𝑋 be the number of steps it takes your computer to fail. 
What is 𝔼[𝑋]?
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Let 𝑌 be the indicator random variable for the event of failure (heads) in step 1

Then by LTE,  𝔼 𝑋 = 𝔼 𝑋	 𝑌 = 1] ⋅ 𝑃 𝑌 = 1 + 𝔼 𝑋	 𝑌 = 0] ⋅ 𝑃 𝑌 = 0
                                     = 1 ⋅ 𝑞 + 𝔼 𝑋	 𝑌 = 0] ⋅ 1 − 𝑞
                                     = 𝑞 + 1 + 𝔼 𝑋 ⋅ 1 − 𝑞     since if 𝑌 = 0 experiment    

                                                         starting at step 2 looks like   
                                                                                            original experiment

Solving we get 𝔼 𝑋 = 1/𝑞



Conditional Expectation again…
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Definition. Let 𝑋 be a discrete random variable; then the conditional 
expectation of 𝑋	given event 𝐴 is

𝔼 𝑋	 𝐴] = '
!	 ∈	$!

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝐴)

Therefore for 𝑋 and 𝑌 discrete random variables, the conditional 
expectation of 𝑋	given 𝑌 = 𝑦	 is

𝔼 𝑋	 𝑌 = 𝑦] = '
!	∈	$!

𝑥 ⋅ 𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) = '
!	 ∈	$!

𝑥 ⋅ 𝑝3,5(𝑥|𝑦)

𝑝3|5 𝑥|𝑦 = 𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) =
𝑝3,5(𝑥, 𝑦)
𝑝5(𝑦)

where we define

= '
!	∈	$!

𝑥 ⋅ 𝑝3|5(𝑥|𝑦)



Conditional Expectation – Discrete & Continuous
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𝑝3|5 𝑥|𝑦 =
𝑝3,5(𝑥, 𝑦)
𝑝5(𝑦)

Discrete:  Conditional PMF:

Continuous: Conditional PDF: 𝑓3|5 𝑥|𝑦 =
𝑓3,5(𝑥, 𝑦)
𝑓5(𝑦)

Conditional Expectation: 𝔼 𝑋	 𝑌 = 𝑦] = '
!	 ∈	$!

𝑥 ⋅ 𝑝3|5(𝑥|𝑦)

Conditional Expectation: 𝔼 𝑋	 𝑌 = 𝑦] = >
-,

,
𝑥 ⋅ 𝑓3|5 𝑥 𝑦 	𝑑𝑥	



Law of Total Expectation - continuous
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴%, … , 𝐴& partition the sample space. Then,

𝔼[𝑋] ='
'(%

&

𝔼 𝑋	 𝐴' ⋅ 𝑃(𝐴')

Law of Total Expectation (random variable version). Let 𝑋 and 𝑌 be 
continuous random variables. Then,

𝔼[𝑋] = >
-,

,
𝔼 𝑋	 𝑌 = 𝑦 ⋅ 𝑓5 𝑦 	 𝑑𝑦



Using LTE for Continuous RVs

Suppose that we first choose 𝑌 ∼ Exp(1/2) and then choose 
𝑋 ∼ Exp !

"
.      What is 𝔼 𝑋 ?

𝑓#|" 𝑥|𝑦 = 3 1/𝑦 	𝑒% &/( 𝑥 ≥ 0
0 o.w.
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PDF for Exp 𝜆 	is B𝜆𝑒
!"# 𝑥 ≥ 0
0 o.w.

 

Expectation is 1/𝜆

𝔼 𝑋	 𝑌 = 𝑦] = >
-,

,
𝑥 ⋅ 𝑓3|5 𝑥 𝑦 	d𝑥 = >

7

,
𝑥 ⋅ 1/𝑦 	𝑒- !/) d𝑥

𝑦 is fixed here

𝔼[𝑋] = >
-,

,
𝔼 𝑋	 𝑌 = 𝑦]	𝑓5(𝑦)	d𝑦 = >

7

,
𝑦 ⋅
1
2
	𝑒-)/*d𝑦 = 	 2

= 𝑦



Reference Sheet (with continuous RVs)
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Brain Break



Agenda

• Law of Total Expectation (LTE)
– Another LTE example
– Conditional expectation and LTE for continuous RVs

• Tail Bounds
– Markov’s Inequality
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Tail Bounds (Idea)

Bounding the probability that a random variable is far from its 
mean. Usually statements of the form:

𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤ 𝑏
𝑃 |𝑋 − 𝔼 𝑋 | ≥ 𝑎 ≤ 𝑏

Useful tool when
• An approximation that is easy to compute is sufficient
• The process is too complex to analyze exactly
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Markov’s Inequality 
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Theorem. Let 𝑋 be a random variable taking only non-negative values. 
Then, for any 𝑡 > 0,
         𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[3]

<
. 

(Alternative form)  For any 𝑘 ≥ 1 ,
         𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤ %

=

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of 𝑋.



Markov’s Inequality – Proof I  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

𝔼[𝑋] ='
!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

='
!><

𝑥 ⋅ 𝑃(𝑋 = 𝑥) +'
!?<

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

≥'
!><

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

≥'
!><

𝑡 ⋅ 𝑃(𝑋 = 𝑥) = 𝑡 ⋅ 𝑃(𝑋 ≥ 𝑡)

≥ 0 because 𝑥 ≥ 0 
whenever 𝑃 𝑋 = 𝑥 ≥ 0      
(𝑋 takes only non-negative 
values)  

Follows by re-arranging terms 
… 



Markov’s Inequality – Proof II  
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Theorem. Let 𝑋 be a (continuous) random variable 
taking only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼[#]
%

. 

𝔼[𝑋] = >
7

,
𝑥 ⋅ 𝑓3 𝑥 	d𝑥

= >
<

,
𝑥 ⋅ 𝑓3 𝑥 	d𝑥	 + >

7

<
𝑥 ⋅ 𝑓3 𝑥 	d𝑥

≥ >
<

,
𝑥 ⋅ 𝑓3 𝑥 	d𝑥	

≥ >
<

,
𝑡 ⋅ 𝑓3 𝑥 	d𝑥	 = 𝑡 ⋅ >

<

,
𝑓3 𝑥 	d𝑥	 = 𝑡 ⋅ 𝑃(𝑋 ≥ 𝑡)

so  𝑃 𝑋 ≥ 𝑡 ≤ 𝔼[𝑋]/𝑡 as before



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝
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𝑃 𝑋 = 𝑖 = 1 − 𝑝 '-%𝑝 𝔼[𝑋] =
1
𝑝

“𝑋 is the number of times Alice needs to flip a biased coin until she sees heads, if 
heads occurs with probability 𝑝?

What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2/𝑝? 

Markov’s inequality: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ %
*



Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound 𝑝	on the probability of 
seeing a website with 75 or more ads. 
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Poll: pollev.com/stefanotessaro617
a.  0 ≤ 𝑝 < 0.25
b.  0.25 ≤ 𝑝 < 0.5
c.  0.5 ≤ 𝑝 < 0.75
d.  0.75 ≤ 𝑝
e.  Unable	to	compute

𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤
1
𝑘



𝑃 𝑋 ≥ 𝑘 ⋅ 𝔼 𝑋 ≤
1
𝑘Example

Suppose that the average number of ads you will see on a 
website is 25. Give an upper bound 𝑝	on the probability of 
seeing a website with 20 or more ads. 
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Poll:  pollev.com/stefanotessaro617
a.  0 ≤ 𝑝 < 0.25
b.  0.25 ≤ 𝑝 < 0.5
c.  0.5 ≤ 𝑝 < 0.75
d.  0.75 ≤ 𝑝
e.  Unable	to	compute



Example – Geometric Random Variable

Let 𝑋 be geometric RV with parameter 𝑝
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𝑃 𝑋 = 𝑖 = 1 − 𝑝 '-%𝑝 𝔼[𝑋] =
1
𝑝

“𝑋 is the number of times Alice needs to flip a biased coin until she sees heads, if 
heads occurs with probability 𝑝?

What is the probability that 𝑋 ≥ 2𝔼[𝑋] = 2/𝑝? 

Markov’s inequality: 𝑃 𝑋 ≥ 2𝔼[𝑋] ≤ %
*

Next time we will see that we can get better 
tail bounds using variance


