CSE 312 Foundations of Computing II

1

Lecture 18: Joint Distributions

Midterm

- We are finishing grading today for now focus on PSet 5
- I will spend a few minutes talking about midterm results on Friday

Agenda

- Joint Distributions
	- Cartesian Products
	- Joint PMFs and Joint Range
	- Marginal Distribution

Mostly formalism helping us with multiple random variables

• Conditional Expectation and Law of Total Expectation

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a large amount of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop

Review Cartesian Product

Definition. Let A and B be sets. The **Cartesian product** of A and B is denoted

$$
A \times B = \{(a, b) : a \in A, b \in B\}
$$

Example. $\{1,2,3\} \times \{4,5\} = \{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\}$

If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

The sets don't need to be finite! You can have $\mathbb{R}\times\mathbb{R}$ (often denoted \mathbb{R}^2)

Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The **Joint PMF** of X and Y is

$$
p_{X,Y}(a,b)=P(X=a,Y=b)
$$

Definition. The **joint range** of $p_{X,Y}$ is $\Omega_{X,Y} = \{(c, d) : p_{X,Y}(c, d) > 0\} \subseteq \Omega_X \times \Omega_Y$

Note that

$$
\sum_{(s,t)\in\Omega_{X,Y}} p_{X,Y}(s,t) = 1
$$

Example – Weird Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.

 $\Omega_X = \{1,2,3,4\}$ and $\Omega_Y = \{1,2,3,4\}$

In this problem, the joint PMF is if

 $p_{X,Y}(x, y) = \{$ 1/16 if $x, y \in \Omega_{X,Y}$ 0 otherwise

and the joint range is (since all combinations have non-zero probability) $\Omega_{X,Y} = \Omega_X \times \Omega_Y$

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and *Y* be the value of the second die. Let $U = min(X, Y)$ and $W = max(X, Y)$ $\Omega_{II} = \{1,2,3,4\}$ and $\Omega_{W} = \{1,2,3,4\}$

$$
\Omega_{U,W} = \{(u, w) \in \Omega_U \times \Omega_W : u \le w\} \ne \Omega_U \times \Omega_W
$$

Poll: pollev.com/stefanotessaro617 What is $p_{U,W}(1, 3) = P(U = 1, W = 3)$? a. $1/16$ b. 2/16 c. $1/2$ Not sure

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = min(X, Y)$ and $W = max(X, Y)$ $\Omega_{II} = \{1,2,3,4\}$ and $\Omega_{W} = \{1,2,3,4\}$

$$
\Omega_{U,W} = \{(u, w) \in \Omega_U \times \Omega_W : u \le w\} \ne \Omega_U \times \Omega_W
$$

The joint PMF $p_{U,W}(u, w) = P(U = u, W = w)$ is

 $p_{U,W}(u,w) = \begin{cases} 2/16 & \text{if } (u,w) \in \Omega_U \times \Omega_W \text{ where } w > u \ 1/16 & \text{if } (u,w) \in \Omega_U \times \Omega_W \text{ where } w = u \ 0 & \text{otherwise} \end{cases}$ 1/16 if $(u, w) \in \Omega_U \times \Omega_W$ where $w = u$ 0 otherwise

Example – Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and *Y* be the value of the second die. Let $U = min(X, Y)$ and $W = max(X, Y)$

Suppose we didn't know how to compute $P(U = u)$ directly. Can we figure it out if we know $p_{U,W}(u, w)$?

Just apply LTP over the possible values of W :

$$
p_U(1) = \frac{7}{16}
$$

\n
$$
p_U(2) = \frac{5}{16}
$$

\n
$$
p_U(3) = \frac{3}{16}
$$

\n
$$
p_U(4) = \frac{1}{16}
$$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The **marginal PMF** of

$$
p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)
$$

Similarly, $p_Y(b) = \sum_{a \in \Omega_X} p_{X,Y}(a, b)$

Continuous distributions on ℝ×ℝ

Definition. The **joint probability density function (PDF)** of continuous random variables X and Y is a function $f_{X,Y}$ defined on $\mathbb{R}\times\mathbb{R}$ such that

- $f_{X,Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx dy = 1$

for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_A f_{X,Y}(x, y) dx dy$ The **(marginal) PDFs** f_x and f_y are given by $- f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$ $-f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx$

 $\sum_{i=1}^{n}$

Independence and joint distributions

Definition. Discrete random variables X and Y are **independent** iff • $p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$ for all $x \in \Omega_X, y \in \Omega_Y$

Definition. Continuous random variables X and Y are **independent** iff • $f_{X,Y}(x, y) = f_X(x) \cdot f_Y(y)$ for all $x, y \in \mathbb{R}$

Example – Uniform distribution on a unit disk

 $\mathbf{1}$

1

 $\dot{\Phi}$

-1

-1

Suppose that a pair of random variabes (X, Y) is chosen uniformly from the set of real points (x, y) such that $x^2 + y^2 \le 1$

This is a disk of radius 1 which has area π

$$
f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi} \\ 0 \end{cases}
$$

$$
if x^2 + y^2 \le 1
$$

otherwise

Poll: pollev.com/stefanotessaro617 Are X and Y independent? a. Yes b. No

Covariance: How correlated are X and Y?

Recall that if X and Y are independent, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Definition: The **covariance** of random variables X and Y, $Cov(X, Y) = E[XY] - E[X] \cdot E[Y]$

Unlike variance, covariance can be positive or negative. It has has value 0 if the random variables are independent.

Two Covariance examples:

Suppose $X \sim \text{Bernoulli}(p)$

If random variable $Y = X$ then $Cov(X, Y) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = Var(X) = p(1 - p)$

If random variable
$$
Z = -X
$$
 then
\n
$$
Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X] \cdot \mathbb{E}[Z]
$$
\n
$$
= \mathbb{E}[-X^2] - \mathbb{E}[X] \cdot \mathbb{E}[-X]
$$
\n
$$
= -\mathbb{E}[X^2] + \mathbb{E}[X]^2 = -Var(X) = -p(1 - p)
$$

16

 $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Compare with …

Suppose $X, Y \sim \text{Bernoulli}(p)$, independent

Then: $Cov(X, Y) = E[XY] - E[X] \cdot E[Y] = E[X] \cdot E[Y] - E[X] \cdot E[Y] = 0$

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a, b)$ their joint PMF. The **expectation** of some function $g(x, y)$ with inputs X and Y is

$$
\mathbb{E}[g(X,Y)] = \sum_{a \in \Omega_X} \sum_{b \in \Omega_Y} g(a,b) \cdot p_{X,Y}(a,b)
$$

Definition. Let X and Y be continuous random variables and $f_{X,Y}(x, y)$ their joint PDF. The **expectation** of some function $g(x, y)$ with inputs X and Y is

$$
\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) \, dx \, dy
$$

Brain Break

Agenda

- Joint Distributions
	- Cartesian Products
	- Joint PMFs and Joint Range
	- Marginal Distribution
- Conditional Expectation and Law of Total Expectation

Conditional Expectation

Definition. Let X be a discrete random variable then the **conditional expectation** of X given event A is

$$
\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \cdot P(X = x \mid A)
$$

Notes:

• Can be phrased as a "random variable version"

 $E[X|Y=y]$

• Linearity of expectation still applies here $\mathbb{E}[aX + bY + c | A] = a \mathbb{E}[X | A] + b \mathbb{E}[Y | A] + c$

Law of Total Expectation

Law of Total Expectation (event version). Let *X* be a random variable and let events $A_1, ..., A_n$ partition the sample space. Then, $\mathbb{E}[X] = \sum$ \overline{n} $\mathbb{E}[X | A_i] \cdot P(A_i)$

Law of Total Expectation (random variable version). Let *X* be a random variable and Y be a discrete random variable. Then,

 $i=1$

$$
\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot P(Y = y)
$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$
\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x)
$$
\n
$$
= \sum_{x \in \Omega_X} x \cdot \sum_{i=1}^n P(X = x | A_i) \cdot P(A_i)
$$
\n
$$
= \sum_{i=1}^n P(A_i) \sum_{x \in \Omega_X} x \cdot P(X = x | A_i)
$$
\n(change order of sums)

\n
$$
= \sum_{i=1}^n P(A_i) \cdot \mathbb{E}[X|A_i]
$$
\n(def of cond. expect.)

Example – Flipping a Random Number of Coins

Suppose someone gave us $Y \sim \text{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

$$
\mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{E}[X | Y = i] \cdot P(Y = i) = \sum_{i=0}^{\infty} \frac{i}{2} \cdot P(Y = i)
$$

$$
= \frac{1}{2} \cdot \sum_{i=0}^{\infty} i \cdot P(Y = i)
$$

$$
= \frac{1}{2} \cdot \mathbb{E}[Y] = \frac{1}{2} \cdot 5 = 2.5
$$

Example – Computer Failures (a familiar example)

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability p (independently of other steps).

Let X be the number of steps it takes your computer to fail. What is $\mathbb{E}[X]$?

Let Y be the indicator random variable for the event of failure in step 1

```
Then by LTE, \mathbb{E}[X] = \mathbb{E}[X | Y = 1] \cdot P(Y = 1) + \mathbb{E}[X | Y = 0] \cdot P(Y = 0)= 1 \cdot p + \mathbb{E}[X | Y = 0] \cdot (1-p)p = p + (1 + \mathbb{E}[X]) \cdot (1 - p) since if Y = 0 experiment
                                                       starting at step 2 looks like 
                                                       original experiment
```
Solving we get $\mathbb{E}[X] = 1/p$

Reference Sheet (with continuous RVs)

