CSE 312 Foundations of Computing II

Lecture 17: Continuity Correction & Distinct Elements

1

Review CLT

One main application: Use Normal Distribution to Approximate Y_n No need to understand Y_n !

Agenda

- Continuity correction
- Application: Counting distinct elements

Example – Y_n is binomial

We understand binomial, so we can see how well approximation works

We flip *n* independent coins, heads with probability $p = 0.75$.

 $X = #$ heads $\mu = \mathbb{E}(X) = 0.75n$ $\sigma^2 = \text{Var}(X) = p(1-p)n = 0.1875n$

 $\mathbb{P}(X \leq 0.7n)$

Example – Naive Approximation

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads?

Exact.
$$
\mathbb{P}(X \in \{20,21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx \boxed{0.2448}
$$

Approx. $X = # \text{ heads } \mu = \mathbb{E}(X) = 0.5n = 20 \quad \sigma^2 = \text{Var}(X) = 0.25n = 10$ $\mathbb{P}(20 \le X \le 21) = \Phi$ $20 - 20$ 10 ≤ $X - 20$ 10 ≤ $21 - 20$ 10 $\approx \Phi$ | 0 \leq $X - 20$ 10 ≤ 0.32 $= \Phi(0.32) - \Phi(0) \approx 0.1241$ (20)

Example – Even Worse Approximation

Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$
\mathbb{P}(X = 20) = {40 \choose 20} \left(\frac{1}{2}\right)^{40} \approx \boxed{0.1254}
$$

Approx. $P(20 \le X \le 20) = 0$ (

Solution – Continuity Correction

Probability estimate for *i*: Probability for all x that round to *i*!

To estimate probability that discrete RV lands in (integer) interval $\{a, ..., b\}$, compute probability continuous approximation lands in interval $\lbrack a-\frac{1}{2},b+\frac{1}{2}$]

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** or **21** heads?

Exact.
$$
\mathbb{P}(X \in \{20,21\}) = \left[\binom{40}{20} + \binom{40}{21}\right] \left(\frac{1}{2}\right)^{40} \approx \boxed{0.2448}
$$

Approx. $X = #$ heads $\mu = \mathbb{E}(X) = 0.5n = 20$ $\sigma^2 = \text{Var}(X) = 0.25n = 10$

$$
\mathbb{P}(19.5 \le X \le 21.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{21.5 - 20}{\sqrt{10}}\right)
$$

$$
\approx \Phi\left(-0.16 \le \frac{X - 20}{\sqrt{10}} \le 0.47\right)
$$

$$
= \Phi(0.47) - \Phi(-0.16) \approx \boxed{0.2452}
$$

Example – Continuity Correction

Fair coin flipped (independently) **40** times. Probability of **20** heads?

Exact.
$$
\mathbb{P}(X = 20) = {40 \choose 20} \left(\frac{1}{2}\right)^{40} \approx \boxed{0.1254}
$$

Approx.
$$
\mathbb{P}(19.5 \le X \le 20.5) = \Phi\left(\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} \le \frac{20.5 - 20}{\sqrt{10}}\right)
$$

\n≈ Φ(-0.16 ≤ $\frac{X - 20}{\sqrt{10}} \le 0.16$)
\n= Φ(0.16) – Φ(-0.16) ≈ 0.1272

Agenda

- Continuity correction
- Application: Counting distinct elements

Data mining – Stream Model

- In many data mining situations, data often not known ahead of time.
	- Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
	- We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Input: sequence (aka. "stream") of N elements $x_1, x_2, ..., x_N$ from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data \Rightarrow use minimal amount of storage while maintaining working "summary"

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
	- Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
	- Advertising, marketing trends, etc.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

 $N = #$ of IDs in the stream = 11, $m = #$ of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

- *Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.*
- *Space requirement:* $\Omega(m)$

YouTube Scenario: is huge!

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

 $N = #$ of IDs in the stream = 11, $m = #$ of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

How to do this without storing all the elements?

Detour – I.I.D. Uniforms

If Y_1, \dots, Y_m ~ Unif(0,1) (i.i.d.) where do we expect the points to end up?

What is some intuition for this?

Detour – I.I.D. Uniforms

If Y_1, \dots, Y_m ~ Unif(0,1) (i.i.d.) where do we expect the points to end up?

Detour – Min of I.I.D. Uniforms

If Y_1, \dots, Y_m ~ Unif(0,1) (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}[\min \{Y_1, \cdots, Y_m\}]$?

CDF: Observe that $\min\{Y_1, \dots, Y_m\} \geq y$ if and only if $Y_1 \geq y, \dots, Y_m \geq y$ (Similar to Section 6)

 $\Rightarrow P(\min\{Y_1, \cdots, Y_m\} \leq y) = 1 - (1 - y)^m_{20}$ $P(\min\{Y_1, \dots, Y_m\} \geq \gamma) = P(Y_1 \geq \gamma, \dots, Y_m \geq \gamma)$ $= P(Y_1 \geq y) \cdots P(Y_m \geq y)$ (Independence) $= (1 - y)^m$ $y \in [0,1]$

Detour – Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y
$$

Proof (Not covered)

$$
\mathbb{E}[Y] = \int_0^\infty x \cdot f_Y(x) dx = \int_0^\infty \left(\int_0^x 1 dy \right) \cdot f_Y(x) dx = \int_0^\infty \int_0^x f_Y(x) dy dx
$$

$$
= \iint_{0 \le y \le x \le \infty} f_Y(x) dx = \int_0^\infty \int_y^\infty f_Y(x) dx dy = \int_0^\infty P(Y \ge y) dy
$$

22 $\mathbb{E}[Y] = |$ $\overline{\mathbf{0}}$ ∞ $P(Y \ge y)dy =$ $\boldsymbol{0}$ $\mathbf{1}$ $(1 - y)^m$ dy $=-\frac{1}{1-(1-y)^{m+1}}$ $\frac{1}{m+1} (1-y)^{m+1}$ $\boldsymbol{0}$ $\mathbf{1}$ $= 0 - \left(-\frac{1}{\cdot}\right)$ $m + 1$ = 1 $m + 1$

Useful fact. For any random variable Y taking non-negative values

> $\mathbb{E}[Y] = |$ $\boldsymbol{0}$ ∞ $P(Y \geq y)dy$

Detour – Min of I.I.D. Uniforms $Y_1, \cdots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) $Y = \min\{Y_1, \cdots, Y_m\}$

Detour – Min of I.I.D. Uniforms

If Y_1, \dots, Y_m ~ Unif(0,1) (iid) where do we expect the points to end up?

In general,
$$
\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}
$$

\n
$$
\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}
$$
\n
$$
m = 1
$$
\n
$$
\mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{3}
$$
\n
$$
m = 2
$$
\n
$$
\mathbb{E}[\min(Y_1, \dots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}
$$
\n
$$
m = 4
$$
\n
$$
\mathbb{E}[\min(Y_1, \dots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}
$$

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ **Assumption:** For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

$x_1 = 5$	$x_2 = 2$	$x_3 = 27$	$x_4 = 35$	$x_5 = 4$
$h(5)$	$h(2)$	$h(27)$	$h(35)$	$h(4)$

5 distinct elements

 \rightarrow 5 i.i.d. RVs $h(x_1)$, ..., $h(x_5) \sim \text{Unif}(0,1)$ \to $\mathbb{E}[\min\{h(x_1), ..., h(x_5)\}] =$! $5 + 1$ = ! 5

Distinct Elements – Hashing into $[0, 1]$

Hash function $h: U \rightarrow [0,1]$ **Assumption:** For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

$x_1 = 5$	$x_2 = 2$	$x_3 = 27$	$x_4 = 5$	$x_5 = 4$
$h(5)$	$h(2)$	$h(27)$	$h(5)$	$h(4)$

4 distinct elements

 \Rightarrow 4 i.i.d. RVs $h(x_1)$, $h(x_2)$, $h(x_3)$, $h(x_5) \sim \text{Unif}(0,1)$ and $h(x_1) = h(x_4)$

 \Rightarrow $\mathbb{E}[\min\{h(x_1), ..., h(x_5)\}] = \mathbb{E}[\min\{h(x_1), h(x_2), h(x_3), h(x_5)\}] =$! $4 + 1$

Distinct Elements – Hashing into $[0, 1]$

Hash function $h: U \rightarrow [0,1]$ **Assumption:** For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

The MinHash Algorithm – Idea

 $m=$ 1 $\overline{\mathbb{E}[\min\{h(x_1), ..., h(x_N)\}]}$

- 1. Compute val = $min{h(x_1), ..., h(x_N)}$
- 2. Assume that val $\approx \mathbb{E}[\min\{h(x_1),...,h(x_N)\}]$

3. Output round
$$
\left(\frac{1}{\text{val}} - 1\right)
$$

The MinHash Algorithm – Implementation

MinHash Example

Stream: 13, 25, 19, 25, 19, 19 Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

What does MinHash return? Poll: pollev.com/stefanotessaro617 a. 1 b. 3 c. 5 d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23 Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is
$$
\frac{1}{0.1} - 1 = 9
$$
 Clearly, not a very good answer!

Not unlikely: $P(h(x) < 0.1) = 0.1$

The MinHash Algorithm – Problem

How can we reduce the variance?

Idea: Repetition to reduce variance! Use k **independent** hash functions $h^1, h^2, \dots h^k$

1

 $(m + 1)^2$

1

 \boldsymbol{k}

Algorithm MinHash $(x_1, x_2, ..., x_N)$

 $val_1, ..., val_k \leftarrow \infty$ $$ $val_1 \leftarrow \min\{val_1, h^1(x_i)\}, \dots, val_k \leftarrow \min\{val_k, h^k(x_i)\}\$ val ← 1 $\frac{1}{k}$ $i=1$ K $\mathsf{val}_{\mathsf{i}}$ **return** round $\Big(\frac{1}{10}\Big)$ $\frac{1}{\text{val}}$ – 1 $Var(val) =$

MinHash and Estimating # of Distinct Elements in Practice

- MinHash in practice:
	- One also stores the element that has the minimum hash value for each of the k hash functions
		- Then, just given separate MinHashes for sets A and B , can also estimate – what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are
- Another randomized data structure for distinct elements in practice: – HyperLoglog - even more space efficient but doesn't have the set combination properties of MinHash