
CSE 312

Foundations of Computing II
Lecture 15: Normal Distribution & Central Limit Theorem
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𝑓(𝑥)

Review Continuous RVs
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Probability Density Function (PDF).
𝑓:ℝ → ℝ s.t.
• 𝑓 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

• ∫!"
#"𝑓 𝑥 d𝑥 = 1

Cumulative Distribution Function (CDF).

𝐹 𝑦 = /
!"

$
𝑓(𝑥) d𝑥

Theorem. 𝑓 𝑥 = %&(()
%(

𝑦

Density ≠ Probability ! 𝐹! 𝑦 = 𝑃 𝑋 ≤ 𝑦

= 1Area



Review Continuous RVs
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𝑓2(𝑥)

𝑎 𝑏

𝑃 𝑋 ∈ [𝑎, 𝑏] = *
!

"
𝑓# 𝑥 d𝑥 = 𝐹# 𝑏 − 𝐹#(𝑎)



Review Exponential Distribution

Definition. An exponential random variable 𝑋 with parameter 𝜆 ≥ 0 is 
follows the exponential density

𝑓2 𝑥 = ,𝜆𝑒
345 𝑥 ≥ 0
0 𝑥 < 0

CDF: For 𝑦 ≥ 0,
𝐹2 𝑦 = 1 − 𝑒346

We write 𝑋 ∼ Exp 𝜆 and say 𝑋 that follows the exponential distribution.
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Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓2 𝑥 = =
>?@

𝑒3
!"# $

$%$

We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎"). 

Carl Friedrich 
Gauss

𝒩(0, 1).



The Normal Distribution
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Definition. A Gaussian (or normal) random variable with 
parameters 𝜇 ∈ ℝ and 𝜎 ≥ 0 has density

𝑓2 𝑥 = =
>?@

𝑒3
!"# $

$%$

We say that 𝑋 follows the Normal Distribution, and write 𝑋 ∼ 𝒩(𝜇, 𝜎"). 

Carl Friedrich 
Gauss

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎> , then 𝔼[𝑋] = 𝜇, and Var 𝑋 = 𝜎>

Proof of expectation is easy because density curve is symmetric around 𝜇,
𝑓! 𝜇 − 𝑥 = 𝑓!(𝜇 + 𝑥), but proof for variance requires integration of 𝑒#$!/"



The Normal Distribution
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Aka a “Bell Curve” (imprecise name)



Closure of normal distribution – Under Shifting and Scaling

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎> , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎>𝜎>
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𝔼[𝑌] = 𝑎 𝔼[𝑋] + 𝑏 = 𝑎𝜇 + 𝑏

Var 𝑌 = 𝑎> Var 𝑋 = 𝑎>𝜎>
Proof. 

Note:  !#&' ∼ 𝒩 0, 1

Can show with algebra that the PDF of 
𝑌 = 𝑎𝑋 + 𝑏 is still normal.



CDF of normal distribution
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Standard (unit) normal = 𝒩 0, 1

CDF. Φ 𝑧 = 𝑃 𝑍 ≤ 𝑧 = =
>? ∫3A

B 𝑒35$/>d𝑥 for 𝑍 ∼ 𝒩 0, 1

Note: Φ 𝑧 has no nice formula!

If 𝑋 ∼ 𝒩 𝜇, 𝜎> , then 𝐹2 𝑧 = 𝑃 𝑋 ≤ 𝑧 = 𝑃 23D
@
≤ B3D

@
= Φ(B3D

@
)

Fact. If 𝑋 ∼ 𝒩 𝜇, 𝜎> , then 𝑌 = 𝑎𝑋 + 𝑏 ∼ 𝒩 𝑎𝜇 + 𝑏, 𝑎>𝜎>



Table of Standard Cumulative Normal Density
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𝑃 𝑍 ≤ 1.09

𝑃 𝑍 ≤ −1.09 ?
What is

= Φ 1.09 ≈ 0.8621



Closure of the normal -- under addition

Fact. If 𝑋 ∼ 𝒩 𝜇2 , 𝜎2> , Y ∼ 𝒩 𝜇E , 𝜎E> (both independent normal RV) 
then a𝑋 + 𝑏𝑌 + 𝑐 ∼ 𝒩 𝑎𝜇2 + 𝑏𝜇E + 𝑐, 𝑎>𝜎2> + 𝑏>𝜎E>

Note: The special thing is that the sum of normal RVs is still a normal RV.
The values of the expectation and variance are not surprising. 

Why not surprising?
• Linearity of expectation (always true) 
• When 𝑋 and 𝑌 are independent, Var 𝑎𝑋 + 𝑏𝑌 = 𝑎"Var 𝑋 + 𝑏"Var(𝑌)



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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What about Non-standard normal?
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If 𝑋 ∼ 𝒩 𝜇, 𝜎! , then  " #$
%

∼ 𝒩(0, 1)

Therefore, 

𝐹" 𝑧 = 𝑃 𝑋 ≤ 𝑧 = 𝑃
𝑋 − 𝜇
𝜎

≤
𝑧 − 𝜇
𝜎

= Φ
𝑧 − 𝜇
𝜎



Example

Let 𝑋 ∼ 𝒩 0.4, 4 = 2> .  
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𝑃 𝑋 ≤ 1.2 = 𝑃
𝑋 − 0.4
2

≤
1.2 − 0.4

2

= 𝑃
𝑋 − 0.4
2

≤ 0.4

∼ 𝒩 0, 1

= Φ(0.4) ≈ 0.6554



Example

Let 𝑋 ∼ 𝒩 3, 16 .  
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𝑃 2 < 𝑋 < 5 = 𝑃
2 − 3
4

<
𝑋 − 3
4

<
5 − 3
4

= 𝑃 −
1
4
< 𝑍 <

1
2

= Φ
1
2

− Φ −
1
4

≈ 0.29017= Φ
1
2

− 1 − Φ
1
4



Example – How Many Standard Deviations Away?
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Let 𝑋 ∼ 𝒩 𝜇, 𝜎> .  

𝑃 𝑋 − 𝜇 < 𝑘𝜎 = 𝑃
𝑋 − 𝜇
𝜎

< 𝑘 =

= 𝑃 −𝑘 <
𝑋 − 𝜇
𝜎

< 𝑘 = Φ 𝑘 −Φ(−𝑘)

e.g. 𝑘 = 1:   68%
𝑘 = 2:   95% 
𝑘 = 3:   99%



Halloween Brain Break

Normal Distribution Paranormal Distribution



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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Gaussian in Nature

Empirical distribution of collected data often resembles a Gaussian … 
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e.g. Height distribution resembles 
Gaussian.

R.A.Fisher (1918) observed that the 
height is likely the outcome of the 
sum of many independent random 
parameters, i.e., can written as

𝑋 = 𝑋( +⋯+ 𝑋)



Sum of Independent RVs
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𝑋=, … , 𝑋F i.i.d. with expectation 𝜇 and variance 𝜎>

i.i.d. = independent and identically distributed

Define

𝑆F = 𝑋= +⋯+ 𝑋F

𝔼[𝑆F] =

Var(𝑆F) =

𝔼[𝑋=] + ⋯+ 𝔼[𝑋F] = 𝑛𝜇

Var 𝑋= +⋯+ Var 𝑋F = 𝑛𝜎>

Empirical observation: 𝑆F looks like a normal RV as 𝑛 grows. 



Example:  Sum of 𝑛 i.i.d. Exp(1) random variables
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CLT (Idea)
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CLT (Idea)
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Central Limit Theorem
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𝑋=, … , 𝑋F i.i.d., each with expectation 𝜇 and variance 𝜎>

Define 𝑆F = 𝑋= +⋯+ 𝑋F and

𝑌F =
𝑆F − 𝑛𝜇
𝜎 𝑛

𝔼[𝑌F] =

Var(𝑌F) =

1
𝜎 𝑛

𝔼[𝑆F] − 𝑛𝜇 =
1
𝜎 𝑛

𝑛𝜇 − 𝑛𝜇 = 0

1
𝜎>𝑛

Var 𝑆F − 𝑛𝜇 =
Var(𝑆F)
𝜎>𝑛

=
𝜎>𝑛
𝜎>𝑛

= 1



Central Limit Theorem

26

Theorem. (Central Limit Theorem) The CDF of 𝑌F converges to the 
CDF of the standard normal 𝒩(0,1), i.e.,

lim
F→A

𝑃 𝑌F ≤ 𝑦 =
1
2𝜋

]
3A

6
𝑒35$/>d𝑥

𝑌F =
𝑋= +⋯+ 𝑋F − 𝑛𝜇

𝜎 𝑛



Central Limit Theorem
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Theorem. (Central Limit Theorem) The CDF of 𝑌F converges to the 
CDF of the standard normal 𝒩(0,1), i.e.,

lim
F→A

𝑃 𝑌F ≤ 𝑦 =
1
2𝜋

]
3A

6
𝑒35$/>d𝑥

𝑌F =
𝑋= +⋯+ 𝑋F − 𝑛𝜇

𝜎 𝑛

Also stated as:
• lim

F→A
𝑌F →𝒩(0,1)

• lim
F→A

=
F
∑GH=F 𝑋G →𝒩 𝜇, @

$

F
for 𝜇 = 𝔼[𝑋G] and 𝜎> = Var 𝑋G



CLT → Normal Distribution EVERYWHERE
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Neuron Activity

S&P 500 Returns after Elections

Vegetables

Examples from: 
https://galtonboard.com/probabilityexamplesinlife


