CSE 312 Foundations of Computing II

Lecture 14: Expectation & Variance of Continuous RVs Exponential and Normal Distributions

Announcements

- See EdStem posts related to next week's midterm on Nov 2 in class:
	- Midterm General Information
	- Midterm Review (including Practice Midterm)
	- Practice Midterm and other Solutions

Density \neq Probability !

$$
P(X \in [a, b]) = \int_{a}^{b} f_X(x) dx
$$

= $F_X(b) - F_X(a)$

 $F_X(y) = P(X \le y)$

Review: Uniform Distribution

 $X \sim \text{Unif}(a, b)$

1

 $b-a$

 Ω

 a b

$$
f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{else} \end{cases}
$$

Review: From Discrete to Continuous

Expectation of a Continuous RV

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Expectation of a Continuous RV

Example. $T \sim \text{Unif}(0,1)$

Definition. $\mathbb{E}[X] = |$ $-\infty$ $+\infty$ $f_X(x) \cdot x$ dx

1

2

Uniform Density – Expectation

 $X \sim \text{Unif}(a, b)$

$$
f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{else} \end{cases}
$$

$$
\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx
$$

= $\frac{1}{b-a} \int_a^b x \, dx = \frac{1}{b-a} \left(\frac{x^2}{2}\right) \Big|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2}\right)$
= $\frac{(b-a)(a+b)}{2(b-a)} = \frac{a+b}{2}$

Uniform Density – Variance

$$
\mathbb{E}[X^2] = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, \mathrm{d}x
$$

$$
= \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\right) \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)}
$$

$$
= \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}
$$

Uniform Density – Variance

$$
\mathbb{E}[X^2] = \frac{b^2 + ab + a^2}{3} \qquad \mathbb{E}[X] = \frac{a+b}{2}
$$

 $X \sim \text{Unif}(a, b)$

$$
Var(X) = E[X2] - E[X]2
$$

=
$$
\frac{b2 + ab + a2}{3} - \frac{a2 + 2ab + b2}{4}
$$

=
$$
\frac{4b2 + 4ab + 4a2}{12} - \frac{3a2 + 6ab + 3b2}{12}
$$

=
$$
\frac{b2 - 2ab + a2}{12} = \frac{(b - a)2}{12}
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Exponential Density

Assume expected # of occurrences of an event per unit of time is λ (independently)

- Cars going through intersection Rate of radioactive decay
	-

- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event: Poisson distribution

$$
P(X = i) = e^{-\lambda} \frac{\lambda^{i}}{i!}
$$
 (Discrete)

How long to wait until next event? Exponential density!

Let's define it and then derive it!

Exponential Density - Warmup

Assume expected # of occurrences of an event per unit of time is λ (independently)

What is the distribution of $Z = #$ occurrences of event per t units of time?

 $\mathbb{E}[Z] = t\lambda$

 Z is independent over disjoint intervals

so $Z \sim Poi(t\lambda)$

The Exponential PDF/CDF

 $X \sim Poi(\lambda) \Rightarrow P(X = i) = e^{-\lambda} \frac{\lambda^{i}}{i!}$ $\left| i \right|$

Assume expected # of occurrences of an event per unit of time is λ (independently) **Numbers of occurrences of event:** Poisson distribution **How long to wait until next event?** Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0, 1, 2, ...\}$
- Let $Y \sim Exp(\lambda)$ be the time till the first event. We will compute $F_Y(t)$ and $f_Y(t)$
- Let $Z \sim Poi(t\lambda)$ be the # of events in the first t units of time, for $t \ge 0$.
- $P(Y > t) = P(\text{no event in the first } t \text{ units}) = P(Z = 0) = e^{-t\lambda} \frac{(t\lambda)^0}{0!}$;! $= e^{-t\lambda}$
- $F_V(t) = P(Y \le t) = 1 P(Y > t) = 1 e^{-t\lambda}$
- $f_Y(t) =$ $\frac{d}{dt}F_Y(t) = \lambda e^{-t\lambda}$

$P(X > t) = e^{-t\lambda}$

Exponential Distribution

Definition. An **exponential random variable** *X* with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

We write $X \sim \text{Exp}(\lambda)$ and say X that follows the exponential distribution.

Expectation

$$
\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx
$$

$$
= \int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \, dx
$$

$$
= \left. \left(-(x + \frac{1}{\lambda}) e^{-\lambda x} \right) \right|_{0}^{\infty} =
$$

 $\frac{1}{\lambda}$

Somewhat complex calculation use integral by parts

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}
$$

$$
P(X > t) = e^{-t\lambda}
$$

 $E[X] =$ $\frac{1}{\lambda}$

 $Var(X) =$ $\frac{1}{\lambda^2}$

Memorylessness

Definition. A random variable is **memoryless** if for all $s, t > 0$, $P(X > s + t | X > s) = P(X > t).$

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

Assuming an exponential distribution, if you've waited s minutes, The probability of waiting t more is exactly same as when $s = 0$.

Memorylessness of Exponential

Fact. $X \sim \text{Exp}(\lambda)$ is memoryless.

$$
P(X > t) = e^{-\lambda t}
$$

Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when $s = 0$

Proof.

$$
P(X > s + t | X > s) = \frac{P(\{X > s + t\} \cap \{X > s\})}{P(X > s)}
$$

=
$$
\frac{P(X > s + t)}{P(X > s)}
$$

=
$$
\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)
$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
T \sim Exp(\frac{1}{10})
$$

\n
$$
P(10 \le T \le 20) = \int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} dx
$$

\n
$$
y = \frac{x}{10} \text{ so } dy = \frac{dx}{10}
$$

\n
$$
P(10 \le T \le 20) = \int_{1}^{2} e^{-y} dy = -e^{-y} \Big|_{1}^{2} = e^{-1} - e^{-2}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
T \sim Exp(\frac{1}{10})
$$

so $F_T(t) = 1 - e^{-\frac{t}{10}}$

$$
P(10 \le T \le 20) = F_T(20) - F_T(10)
$$

= 1 - e^{- $\frac{20}{10}$} - (1 - e^{- $\frac{10}{10}$}) = e⁻¹ - e⁻²

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

The Normal Distribution

Definition. A **Gaussian (or normal) random variable** with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Carl Friedrich Gauss

The Normal Distribution

Definition. A **Gaussian (or normal) random variable** with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

Carl Friedrich Gauss

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Fact. If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[X] = \mu$, and $\text{Var}(X) = \sigma^2$

Proof of expectation is easy because density curve is symmetric around μ ,

26 We will see next time why the normal distribution is (in some sense) the most important distribution. $f_X(\mu - x) = f_X(\mu + x)$, but proof for variance requires integration of $e^{-x^2/2}$

The Normal Distribution

Aka a "Bell Curve" (imprecise name)

