
CSE 312

Foundations of Computing II
Lecture 13: Poisson wrap-up

Continuous RV
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Announcements

• PSet 4 due today
• Midterm next week in class!
• Midterm general info is posted on Ed
• Review session likely on Tuesday night 
• Practice midterm is posted
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Agenda

• Wrap-up of Poisson RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
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General principle: 
• Events happen at an average rate 

of 𝜆 per time unit 
• Disjoint time intervals independent
• Number of events happening at a 

time unit 𝑋 is distributed according 
to Poi(𝜆) 

Definition. A Poisson random variable 𝑋 with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!

• Poisson approximates Binomial when 𝑛 is large, 
𝑝 is small, and 𝑛𝑝 is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables



Sum of Independent Poisson RVs 
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Theorem. Let 𝑋~Poi(𝜆%) and 𝑌~Poi(𝜆&) such that 𝜆 = 𝜆% + 𝜆&. 
Let 𝑍 = 𝑋 + 𝑌.    For all 𝑧 = 0,1,2,3…,

𝑃 𝑍 = 𝑧 = 𝑒!" ⋅ "
"

'!

More generally, let 𝑋%~Poi 𝜆% , ⋯ , 𝑋(~Poi(𝜆() such that 𝜆 = Σ#𝜆#. 
Let 𝑍 = Σ#𝑋#

𝑃 𝑍 = 𝑧 = 𝑒!" ⋅ "
"

'!



Proof
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𝑃 𝑍 = 𝑧 = Σ)*+' 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗

= Σ)*+' 𝑃 𝑋 = 𝑗) 𝑃(𝑌 = 𝑧 − 𝑗 = Σ)*+' 𝑒!"# ⋅
𝜆%
)

𝑗!
⋅ 𝑒!"$ ⋅

𝜆&
'!)

𝑧 − 𝑗!

= 𝑒!"#!"$ Σ)*+' ⋅
1

𝑗! 𝑧 − 𝑗!
⋅ 𝜆%

)𝜆&
'!)

= 𝑒!" Σ)*+' 𝑧!
𝑗! 𝑧 − 𝑗!

⋅ 𝜆%
)𝜆&

'!) 1
𝑧!

= 𝑒!" ⋅ 𝜆% + 𝜆& ' ⋅ %
'!
= 𝑒!" ⋅ 𝜆' ⋅ %

'!

Law of total probability

Independence

Binomial 
Theorem

𝑍 = 𝑋 + 𝑌 where 𝑋~Poi(𝜆!) and 𝑌~Poi(𝜆") are independent



Don’t be fooled by this picture:  Poisson RVs are discrete
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𝜆 = 5
𝑝 = #

$
𝑛 = 10,15,20

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 1 3 5 7 9 11 13 15

Bin(10,0.5)

Bin(15,1/3)

Bin(20,0.25)

Poi(5)

𝑎𝑠 𝑛 → ∞, Binomial(n, 𝑝 = 𝜆/𝑛) → 𝑝𝑜𝑖(𝜆)

Only integer values 
occur for both 
binomial and Poisson



Agenda

• Wrap-up of Poisson RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
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Often we want to model experiments where the outcome is 
not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.
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0 1𝑇 = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

½𝑃 𝑇 ≥ 0.5 =



11

Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 0.2 ≤ 𝑇 ≤ 0.5 =

0 10.5

0.5 − 0.2 = 0.3

0.2
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 𝑇 = 0.5 =

0 10.5

0



Bottom line

• This gives rise to a different type of random variable
• 𝑃 𝑇 = 𝑥 = 0 for all 𝑥 ∈ [0,1]
• Yet, somehow we want
– 𝑃 𝑇 ∈ [0,1] = 1
– 𝑃 𝑇 ∈ [𝑎, 𝑏] = 𝑏 − 𝑎
– …

• How do we model the behavior of 𝑇?
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First try:  A discrete approximation



Recall:  Cumulative Distribution Function (CDF)
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1/4

1/2

3/4

1

𝑝!

Probability Mass Function
PMF
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𝟐
𝒏
𝟑
𝒏 𝟏

𝒊
𝒏

𝟏/𝒏
𝟐/𝒏
𝟑/𝒏

𝒊/𝒏

𝟏
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𝑝!

Probability Mass Function
PMF

A Discrete Approximation



Probability Density Function of Uniform RV
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𝑓, 𝑥 = F
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

?
9:

;:
𝑓< 𝑥 d𝑥 = ?

=

!
𝑓< 𝑥 d𝑥 = 1 ⋅ 1 = 1

0

1

𝑋 ∼ Unif(0,1) Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1



Probability of Event
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0

1

𝑋 ∼ Unif(0,1)

𝑎 𝑏

𝑓, 𝑥 = F
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥

1. If 0 ≤ 𝑎 and 𝑎 ≤ 𝑏 ≤ 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏 − 𝑎

2. If 𝑎 < 0 and 0 ≤ 𝑏 ≤ 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏

3. If 𝑎 ≥ 0 and 𝑏 > 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏 − 𝑎

4. If 𝑎 < 0 and 𝑏 > 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 1



Probability of Event
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0

1

𝑋 ∼ Unif(0,1)

𝑓, 𝑥 = F
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
@

@
𝑓< 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝜖𝑓< 𝑦 = 𝜖

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓< 𝑦
𝜖𝑓< 𝑧

=
𝑓< 𝑦
𝑓< 𝑧



PDF of Uniform RV
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𝑓, 𝑥 = F
2, 𝑥 ∈ [0,0.5]
0, 𝑥 ∉ [0,0.5]

?
9:

;:
𝑓< 𝑥 d𝑥 = ?

=

!
𝑓< 𝑥 d𝑥 = 2 ⋅ 0.5 = 1

0

2

𝑋 ∼ Unif(0,0.5)

Density ≠ Probability

1

0.5

𝑓< 𝑥 ≫ 1 is possible!

Probability on [0,0.5] accumulates at 
twice the rate compared to Unif(0,1)



Uniform Distribution
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𝑓, 𝑥 = N
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

?
9:

;:
𝑓< 𝑥 d𝑥 = 𝑏 − 𝑎

1
𝑏 − 𝑎

= 1

0

1
𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏
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10

𝑓A 𝑥 = Y
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

0

1

Example. 𝑇 ∼ Unif(0,1)

10
0

𝐹A 𝑥 = 𝑃(𝑇 ≤ 𝑥) = ]
0 𝑥 ≤ 0
? 0 ≤ 𝑥 ≤ 1
1 1 ≤ 𝑥

Probability Density Function

Cumulative Distribution Function 

1

𝑥

𝑥

𝑥



Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓!: ℝ → ℝ, such that 
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Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1
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Probability Density Function - Intuition

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥
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Probability Density Function - Intuition

𝑦

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
@

@
𝑓< 𝑥 d𝑥 = 0

Density ≠ Probability

𝑓< 𝑦 ≠ 0 𝑃 𝑋 = 𝑦 = 0
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Probability Density Function - Intuition

𝑦𝑦 −
𝜖
2 𝑦 +

𝜖
2

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
@

@
𝑓< 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= ?
@9B"

@;B"
𝑓< 𝑥 d𝑥 ≈ 𝜖𝑓<(𝑦)

What 𝑓<(𝑥) measures: The local rate at which probability accumulates 



𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓< 𝑦
𝜖𝑓< 𝑧

=
𝑓< 𝑦
𝑓< 𝑧 27

Probability Density Function - Intuition

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧 = 2

𝑦 𝑧

Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
@

@
𝑓< 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= ?
@9B"

@;B"
𝑓< 𝑥 d𝑥 ≈ 𝜖𝑓<(𝑦)



Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓!: ℝ → ℝ, such that
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Non-negativity: 𝑓< 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫9:
;:𝑓< 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
>

?
𝑓< 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
@

@
𝑓< 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2 ≤ 𝑋 ≤ 𝑦 +

𝜖
2 = ?

@9B"

@;B"
𝑓< 𝑥 d𝑥 ≈ 𝜖𝑓<(𝑦)

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓< 𝑦
𝜖𝑓< 𝑧

=
𝑓< 𝑦
𝑓< 𝑧
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Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 
𝐹! 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ∫"#

$ 𝑓! 𝑥 d𝑥

30

𝑃 𝑋 ∈ [𝑎, 𝑏] = ∫!-
. 𝑓, 𝑥 d𝑥 − ∫!-

/ 𝑓, 𝑥 d𝑥 = 𝐹, 𝑏 − 𝐹,(𝑎)

So: 𝑓, 𝑥 = 0
01
𝐹,(𝑥)

𝐹, is monotone increasing, since 𝑓, 𝑥 ≥ 0. That is 𝐹, 𝑐 ≤ 𝐹, 𝑑 for 𝑐 ≤ 𝑑

lim/→!- 𝐹, 𝑎 = 𝑃 𝑋 ≤ −∞ = 0 lim/→3- 𝐹, 𝑎 = 𝑃 𝑋 ≤ +∞ = 1



From Discrete to Continuous

Discrete Continuous
PMF/PDF 𝑝, 𝑥 = 𝑃 𝑋 = 𝑥 𝑓, 𝑥 ≠ 𝑃 𝑋 = 𝑥 = 0

CDF 𝐹, 𝑥 = \
4 5 1

𝑝,(𝑡) 𝐹, 𝑥 = ^
!-

1
𝑓, 𝑡 𝑑𝑡

Normalization \
1

𝑝, 𝑥 = 1 ^
!-

-
𝑓, 𝑥 𝑑𝑥 = 1

Expectation 𝔼 𝑔 𝑋 =\
1

𝑔 𝑥 𝑝,(𝑥) 𝔼 𝑔 𝑋 = ^
!-

-
𝑔 𝑥 𝑓, 𝑥 𝑑𝑥


