CSE 312
Foundations of Computing Il

Lecture 13: Poisson Distribution



Announcements

* Midterm info is posted
— Practice midterm (solutions posted later this week)
— Q&A session will be scheduled (more info after Wed)
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Agenda

* Poisson Distribution a
* Approximate Binomial distribution using Poisson distribution



Preview: Poisson

Model: # events that occur in an hour
— Expect to see 3 events per hour (but will be random)
— The expected number of eventsin t hours, is 3t
— Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection

X = # of cars passing through a light in 1 hour



Example — Model the process of cars passing through a light in 1 hour

X =# cars passing through a light in 1 hour. E[X] =3

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length 1/n
A

( 1/n
: : | | | | | | | | | |
| | | | | | | | | |
This gives us n independent intervals What should p be?
pollev.com/stefanotessaro617
Assume at most one car per interval A. 3/n
p = probability car arrives in an interval E gn

D. 3/60 6



Example — Model the process of cars passing through a light in 1 hour

X =# cars passing through alightin 1 hour.  Disjoint time intervals are independent.

Know: E[X| = A for some given 1 > 0

1 hAour
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Discrete version: n intervals, each of length 1/n .
In each interval, there is a car with probability p = 1/n (assume < 1 car can pass by)

Each interval is Bernoulli: X; = 1 if carin it" interval (0 otherwise) PX;=1)=A1/n

X=2i-1X; X~ Bin(n,p) P(X =1i) = (")( ) (1 ——)n_l
indeed! E|X|] =pn =1 7



Don’t like discretization Xis binomial P(X =) = (1) (5) (1-3)

« 1/n,

We want now n — o

PIX = i) = (n) (A)i (1 A)"_i B n! Al (1 /1)" (1 A)_i
R YA n  (n—0D!ntil n n
\ ' J \ I\ J
| T v_/1 11
i - e —
SPX=i)=et 2 :



Poisson Distribution

Siméon Denis Poisson
1781-1840

* Suppose “events” happen, independently, at an average rate of 4 per

unit time.

* Let X be the actual number of events happening in a given time
unit. Then X is a Poisson r.v. with parameter A (denoted X ~ Poi(1))

and has distribution (PMF):

Several examples of “Poisson processes’:

* # of cars passing through a traffic light in 1 hour

* # of requests to web servers in an hour

* # of photons hitting a light detector in a given interval

* # of patients arriving to ER within an hour

=_—

Assume
fixed average rate
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Probability Mass Function
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https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/

————————————————————————————————————————————————————————

Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.

0.0)

ZP(Xzi)=Ze"1-F—e"1 i ek = 1|
i=0 ' ' '
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————————————————————————————————————————————————————————

Expectation

Theorem. If X is a Poisson RV with parameter A, then

E[X] =21
o) 0 /11 o0 Al
Proof. [[X] =ZP(X= )i = Ze_l = :ze—ﬂ
i=0 i=0 : = (l o 1)'
> /11—1
= A Ze_l
i=1 =1
00 P 1 (see prior slides!)
=AZe‘A-F =1-1=12
i=0 '

12



————————————————————————————————————————————————————————

Variance . .

______________________________________________________________________
_______________________________________________________________________________________________________________

PrOOf. ]E[XZ] ZZP(X = l) -iz :26 A —_ lz 226—/1 i
=0 i=0 e 1 (i —1)!
L= = 1=
- , A = j
— B — -1,
/1;9 (- 1) L AZe T G+1)
= =
= A 26_/1'7']'4- €_A°F = 1>+
- y ) — Similar to the previous proof
= E[X] =4 =1 Verify offline.

mmm) Var(X) =E[X°]-E[X]?’=2*+1-21° =1 13
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https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/

Poisson Random Variables

Definition. A Poisson random variable X with parameter A = 0 is such
thatforalli =0,1,2,3 ...,

Poisson approximates binomial when:

nis very large, p is very small,and 1 = npis “moderate”
eg.(n > 20andp < 0.05), (n > 100andp < 0.1)

Formally, Binomial approaches Poisson in the limit as
n — oo (equivalently,p — 0) while holdingnp = 1

This Photo by Unknown Author is licensed
under CC BY-NC 15


https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/

Probability Mass Function - Convergence of Binomials

03
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asn — o, Bin(n, p = 4/n) - Poi(4) 16



From Binomial to Poisson

n — OO
p =2
:——)0 Ak
Px =k =(1)pka-pr* " PX=k)=e 2
ELX] =np E[X] =1

Var(X) = np(1 - p) Var(X) = A
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Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

* Send bit string of lengthn = 10*

* Probability of (independent) bit corruptionisp = 107°
What is probability that message arrives uncorrupted?

Using X ~ Poi(A = np = 10*-107° = 0.01)
A 0,010
P(X = 0) = e~h. 55 = e700L . —— ~ 0990049834
Using Y ~ Bin(10%,107°)
P(Y = 0) ~ 0.990049829
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http://redpandazine.com/2016/01/28/red-panda-pet/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Sum of Independent Poisson RVs

Theorem. Let X~Poi(1,) and Y~Poi(],) be independent such that 1 =
A+ letZ=X+Y. Forallz=0,1,23 .., e

More generally, let X; ~Poi(4,), -+, X,,~Poi(4,,) independent such that
A= Ziﬂ'i‘ Let Z = ZiXi

i.e., Z~ Poi(4 = };; 1;)
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Sum of Independent Poisson RVs

Theorem Let X~Poi(4;) and Y~Poi(4,) be mdependent such that 4 =
Al‘l‘lz letZ =X +Y. ForaIIZ_0123 |

P(Z = Z) = -4, )'_Z
Z!
P (Z — Z) =7 pollev.com/stefanotessaro617
1. P(Z=2)=32aP(X=j,Y=2—)) A. All of them are right
P(Z=2)=32P(X =j,Y = z—)) B. The first 3 are right

C. Only1isright

P(Z=2)=3%2PY=z—jlX=)P(X=]
(Z=2)=Z%_oP(Y =z—j|X =) P( ])D. Don’t know

P(Z =2z) = Z]-ZzoP(Y =z —j|X =j)

5 9 e
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Proof

P(Z=2z)=3_PX=j,Y=2z—])) Law of total probability

Y 2
=Y PX=)PY =z—j) =3, e ™ ]—'1 ez - 2_j| Independence
=eTh (Zfz:“ Ttz = WZ_])
A : 1
— = Z 1947\
° (ZJ‘O = ht )z!

. ) . Binomial
= G -(/11+/12)Z-Z=e AT~ Theorem
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Poisson Random Variables

Definition. A Poisson random variable X with parameter A = 0 is such
thatforalli =0,1,2,3 ...,

General principle:
* Events happen at an averagerate ¢ Poisson approximates Binomial when n is large,

of A per time unit p is small, and np is moderate

* Number of events happeningata <+ Sum of independent Poisson is still a Poisson
time unit X is distributed
according to Poi(4)
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Next

e Continuous Random Variables a

Often we want to model experiments where the outcome is
not discrete.
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Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
 Every time within [0,1] is equally likely

— Time measured with infinitesimal precision.

0] T =0.71237131931129576 ...

___________________________________________________________________________________

25



Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
 Every point in time within [0,1] is equally likely

P(T =0.5) =15

—_—

0.5 1
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
* Every point in time within [0,1] is equally likely

P(0.2<T<05)=08—02=0.3

| ——

0 0.2 0.5
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Lightning strikes a pole within a one-minute time frame
* T =time of lightning strike
 Every point in time within [0,1] is equally likely

Y 0.5

P(T=05)=0
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Bottom line

This gives rise to a different type of random variable
P(T =x) =0forallx € [0,1]

Yet, somehow we want

—P(T €[0,1]) =1

—P(T €la,b])=b—a

How do we model the behavior of T
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