CSE 312 Foundations of Computing II

1

Lecture 13: Poisson Distribution

Announcements

- Midterm info is posted
	- Practice midterm (solutions posted later this week)
	- Q&A session will be scheduled (more info after Wed)

Review Zoo of Random Variables to the Class 19 to the Review of Random Variables to the Review of The Review

$X \sim \text{Unif}(a, b)$	$X \sim \text{Ber}(p)$	$X \sim \text{Bin}(n, p)$
$P(X = k) = \frac{1}{b - a + 1}$	$P(X = 1) = p, P(X = 0) = 1 - p$	$P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$
$E[X] = \frac{a + b}{2}$	$E[X] = p$	$Var(X) = p(1 - p)$
$X \sim \text{Geo}(p)$	$X \sim \text{NegBin}(r, p)$	$X \sim \text{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k-1}p$	$P(X = k) = {k-1 \choose r-1} p^r (1 - p)^{k-r}$	$P(X = k) = \frac{{k \choose k} {n-k \choose n-k}}{n \choose n}$
$E[X] = \frac{1}{p}$	$E[X] = \frac{r}{p}$	$E[X] = n \frac{K}{N}$
$Var(X) = \frac{r(1-p)}{p^2}$	$Var(X) = \frac{r(1-p)}{p^2}$	$Var(X) = n \frac{K(N - K)(N - n)}{N^2(N - 1)}$

Agenda

• Poisson Distribution

-
- Approximate Binomial distribution using Poisson distribution

Preview: Poisson

Model: # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3t$
- Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

 $X = #$ of cars passing through a light in 1 hour

Example – Model the process of cars passing through a light in 1 hour

 $X = #$ cars passing through a light in 1 hour. $\mathbb{E}[X] = 3$

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1/n$

This gives us n independent intervals Assume at most one car per interval $p =$ probability car arrives in an interval

6 What should p be? **pollev.com/stefanotessaro617** A. $3/n$ B. 3 C. 3 D. 3/60

Example – Model the process of cars passing through a light in 1 hour

 $X = #$ cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X] = \lambda$ for some given $\lambda > 0$

Discrete version: n intervals, each of length $1/n$.

In each interval, there is a car with probability $p = \lambda/n$ (assume ≤ 1 car can pass by)

Each interval is Bernoulli: $X_i = 1$ if car in ith interval (0 otherwise). $P(X_i = 1) = \lambda / n$

 $X = \sum_{i=1}^{n} X_i$ $X \sim Bin(n, p)$ $P(X = i) =$ \overline{n} \boldsymbol{i} λ \overline{n} \boldsymbol{i} $1-\frac{\lambda}{\lambda}$ \overline{n} $n{-}i$

$$
indeed: E[X] = pn = \lambda \qquad \qquad \text{and} \qquad \qquad
$$

Don't like discretization

X is binomial
$$
P(X = i) = {n \choose i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}
$$

8

We want now $n \to \infty$

$$
P(X = i) = {n \choose i} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i} = \frac{n!}{(n-i)! \, n^i} \frac{\lambda^i}{i!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-i}
$$

$$
\rightarrow P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}
$$

Poisson Distribution

- Suppose "events" happen, independently, at an *average* rate of λ per unit time.
- Let X be the *actual* number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted $X \sim \text{Poi}(\lambda)$) and has distribution (PMF):

$$
P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}
$$

Several examples of "Poisson processes":

- # of cars passing through a traffic light in 1 hour
- # of requests to web servers in an hour
- # of photons hitting a light detector in a given interval
- # of patients arriving to ER within an hour

9 Assume fixed average rate

Probability Mass Function

Validity of Distribution

$$
P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1.

Variance
\n
$$
P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$
\nTheorem. If X is a Poisson RV with parameter λ , then $\text{Var}(X) = \lambda$

\nProof.
$$
\mathbb{E}[X^{2}] = \sum_{i=0}^{\infty} P(X = i) \cdot i^{2} = \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2} = \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i
$$
\n
$$
= \lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i = \lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot (j+1)
$$
\n
$$
= \lambda \left[\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \right] = \lambda^{2} + \lambda
$$
\nSimilar to the previous proof

\n
$$
= \mathbb{E}[X] = \lambda \qquad = 1 \qquad \text{Verify offline.}
$$
\nVar(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter **z** that for all $i = 0,1,2,3...$

$$
P(X = i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}
$$

Poisson approximates binomial when: *n* is very large, *p* is very small, and $\lambda = np$ is e.g. $(n > 20$ and $p < 0.05$), $(n > 100$

Formally, Binomial approaches Poisson in the lin $n \to \infty$ (equivalently, $p \to 0$) while holding np

Probability Mass Function – Convergence of Binomials

From Binomial to Poisson

$$
n \to \infty
$$

\n
$$
X \sim \text{Bin}(n, p)
$$

\n
$$
np = \lambda
$$

\n
$$
P(X = k) = {n \choose k} p^{k} (1-p)^{n-k}
$$

\n
$$
p = \frac{\lambda}{n} \to 0
$$

\n
$$
P(X = k) = e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

\n
$$
E[X] = np
$$

\n
$$
E[X] = \lambda
$$

\n
$$
\text{Var}(X) = np(1-p)
$$

\n
$$
\text{Var}(X) = \lambda
$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n = 10⁴$
- Probability of (independent) bit corruption is $p = 10^{-6}$ What is probability that message arrives uncorrupted?

Using
$$
X \sim \text{Poi}(\lambda = np = 10^4 \cdot 10^{-6} = 0.01)
$$

$$
P(X = 0) = e^{-\lambda} \cdot \frac{\lambda^0}{0!} = e^{-0.01} \cdot \frac{0.01^0}{0!} \approx 0.990049834
$$

Using $Y \sim \text{Bin}(10^4, 10^{-6})$ $P(Y = 0) \approx 0.990049829$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ be independent such that $\lambda =$ $\lambda_1 + \lambda_2$. Let $Z = X + Y$. For all $z = 0,1,2,3$..., $P(Z = z) = e^{-\lambda}.$ $\lambda^{\mathbf{Z}}$ z! i.e., $Z \sim \text{Poi}(\lambda = \lambda_1 + \lambda_2)$

More generally, let $X_1 \sim \text{Poi}(\lambda_1)$, \cdots , $X_n \sim \text{Poi}(\lambda_n)$ independent such that $\lambda = \Sigma_i \lambda_i$. Let $Z = \Sigma_i X_i$

$$
P(Z=z) = e^{-\lambda} \cdot \frac{\lambda^z}{z!}
$$

i.e., $Z \sim \text{Poi}(\lambda = \sum_i \lambda_i)$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ be independent such that $\lambda =$ $\lambda_1 + \lambda_2$. Let $Z = X + Y$. For all $z = 0,1,2,3$..., $P(Z = z) = e^{-\lambda}.$ $\lambda^{\mathbf{Z}}$ z!

 $P(Z = z) = ?$ 1. $P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)$ 2. $P(Z = z) = \sum_{j=0}^{\infty} P(X = j, Y = z - j)$ 3. $P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j) P(X = j) \sum_{n=0}^{z} P(X = j) P(X = j)$ 4. $P(Z = z) = \sum_{j=0}^{z} P(Y = z - j | X = j)$

pollev.com/stefanotessaro617

- A. All of them are right
- B. The first 3 are right
-

D. Don't know

Proof

$$
P(Z = z) = \sum_{j=0}^{z} P(X = j, Y = z - j)
$$
 Law of total probability
\n
$$
= \sum_{j=0}^{z} P(X = j) P(Y = z - j) = \sum_{j=0}^{z} e^{-\lambda_1} \cdot \frac{\lambda_1^j}{j!} \cdot e^{-\lambda_2} \cdot \frac{\lambda_2^{z-j}}{z - j!}
$$
Independence
\n
$$
= e^{-\lambda_1 - \lambda_2} \left(\sum_{j=0}^{z} \frac{1}{j! z - j!} \cdot \lambda_1^j \lambda_2^{z-j} \right)
$$
\n
$$
= e^{-\lambda} \left(\sum_{j=0}^{z} \frac{z!}{j! z - j!} \cdot \lambda_1^j \lambda_2^{z-j} \right) \frac{1}{z!}
$$
\nBinomial
\n
$$
= e^{-\lambda} \cdot (\lambda_1 + \lambda_2)^z \cdot \frac{1}{z!} = e^{-\lambda} \cdot \lambda^z \cdot \frac{1}{z!}
$$

Summary Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \geq 0$ is such that for all $i = 0, 1, 2, 3, ...$

$$
P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $Poi(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

• Continuous Random Variables

Often we want to model experiments where the outcome is not discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- $T =$ time of lightning strike
- Every time within [0,1] is equally likely
	- Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- $T =$ time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- $T =$ time of lightning strike
- Every point in time within [0,1] is equally likely

$$
P(0.2 \le T \le 0.5) = 0.5 - 0.2 = 0.3
$$

Lightning strikes a pole within a one-minute time frame

- $T =$ time of lightning strike
- Every point in time within [0,1] is equally likely

 $P(T = 0.5) = 0$

Bottom line

- This gives rise to a different type of random variable
- $P(T = x) = 0$ for all $x \in [0,1]$
- Yet, somehow we want
	- $-P(T \in [0,1]) = 1$
	- $-P(T \in [a, b]) = b a$
	- $-$ …
- How do we model the behavior of T ?