
CSE 312

Foundations of Computing II
Lecture 13: Poisson Distribution
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Announcements

• Midterm info is posted
– Practice midterm (solutions posted later this week)
– Q&A session will be scheduled (more info after Wed)
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Review Zoo of Random Variables🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏	 − 𝑎 + 1
𝐸 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)

12 	

𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1 𝑝! 1 − 𝑝 "#!

𝐸 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)
𝑝$

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
!
"

#$!
%$"
#
%

𝐸 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 − 𝐾)(𝑁 − 𝑛)

𝑁&(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘 𝑝" 1 − 𝑝 %#"

𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝐸 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)	

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 "#&𝑝

𝐸 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝$



Agenda

• Poisson Distribution
• Approximate Binomial distribution using Poisson distribution 
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Preview: Poisson

Model: # events that occur in an hour
– Expect to see 3 events per hour (but will be random)
– The expected number of events in 𝑡 hours, is 3𝑡
– Occurrence of events on disjoint time intervals is independent

Example – Modelling car arrivals at an intersection

   𝑋 =	# of cars passing through a light in 1 hour
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Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour. 
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𝔼[𝑋] = 3

1/𝑛

Assume:   Occurrence of events on disjoint time intervals is independent

What should 𝑝 be?
pollev.com/stefanotessaro617
A.  3/𝑛
B.  3𝑛 
C.  3
D.  3/60

Divide hour into 𝑛 intervals of length 1/𝑛Approximation idea:

This gives us 𝑛 independent intervals

Assume at most one car per interval

𝑝 =	probability car arrives in an interval



Example – Model the process of cars passing through a light in 1 hour

𝑋 = # cars passing through a light in 1 hour.       Disjoint time intervals are independent.
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Know: 𝔼[𝑋] = 𝜆 for some given 𝜆 > 0 

1 hour

Discrete version: 𝑛 intervals, each of length 1/𝑛 . 
In each interval, there is a car with probability 𝑝 = 𝜆/𝑛 (assume ≤ 1 car can pass by)

Each interval is Bernoulli: 𝑋H = 1 if car in 𝑖th interval (0 otherwise). 𝑃(𝑋H = 1) = 𝜆	/𝑛

𝑋 = ∑!"#$ 𝑋!  

10 0 1 10 0 0 0 1 1 0

1/𝑛

𝑋~	Bin(𝑛, 𝑝)   𝑃 𝑋 = 𝑖 = $
!

%
$

!
1 − %

$

$&!

indeed! 𝔼 𝑋 = 𝑝𝑛 = 𝜆



Don’t like discretization
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We want now 𝑛 → ∞

𝑃 𝑋 = 𝑖 =
𝑛
𝑖

𝜆
𝑛

!

1 −
𝜆
𝑛

$&!

=
𝑛!

𝑛 − 𝑖 ! 𝑛!
𝜆!

𝑖!
1 −

𝜆
𝑛

$

1 −
𝜆
𝑛

&!

	

𝑋 is binomial 𝑃 𝑋 = 𝑖 = !
"

#
!

"
1 − #

!

!$"

1/𝑛

→ 1 → 1→ 𝑒IJ
→ 𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "

!

#!
	



Poisson Distribution

• Suppose “events” happen, independently, at an average rate of 𝜆 per 
unit time.  

• Let 𝑋 be the actual number of events happening in a given time 
unit.  Then 𝑋 is a Poisson r.v. with parameter 𝜆 (denoted 𝑋	~	Poi(𝜆)) 
and has distribution (PMF):
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𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!
	

Several examples of “Poisson processes”:
• # of cars passing through a traffic light in 1 hour
• # of requests to web servers in an hour
• # of photons hitting a light detector in a given interval
• # of patients arriving to ER within an hour

Siméon Denis Poisson
1781-1840

Assume 
fixed average rate



Probability Mass Function 
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This Photo by Unknown Author is licensed 
under CC BY-NC

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Validity of Distribution

We first want to verify that Poisson probabilities sum up to 1.
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@
!"-

.

𝑃 𝑋 = 𝑖 =@
!"-

.

𝑒&% ⋅
𝜆!

𝑖!
= 𝑒&% @

!"-

.
𝜆!

𝑖!

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!
	

Fact (Taylor series expansion):

𝑒/ =@
!"-

.
𝑥!

𝑖!

= 𝑒&%𝑒% = 1



Expectation
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then
𝔼 𝑋 = 𝜆

𝔼[𝑋] =@
!"-

.

𝑃 𝑋 = 𝑖 ⋅ 𝑖 =	@
!"-

.

𝑒&% ⋅
𝜆!

𝑖!
⋅ 𝑖 =@

!"#

.

𝑒&% ⋅
𝜆!

(𝑖 − 1)!

= 𝜆	@
!"#

.

𝑒&% ⋅
𝜆!&#

(𝑖 − 1)!

= 𝜆	@
!"-

.

𝑒&% ⋅
𝜆!

𝑖!

Proof.

= 1 (see prior slides!)

= 𝜆 ⋅ 1 = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!
	



Variance
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Theorem. If 𝑋 is a Poisson RV with parameter 𝜆, then Var(𝑋) = 𝜆

𝔼 𝑋K =+
HLM

N

𝑃 𝑋 = 𝑖 ⋅ 𝑖K =+
HLM

N

𝑒IJ ⋅
𝜆H

𝑖!
⋅ 𝑖K =+

HLO

N

𝑒IJ ⋅
𝜆H

(𝑖 − 1)!
𝑖

= 𝜆+
HLO

N

𝑒IJ ⋅
𝜆HIO

(𝑖 − 1)!
⋅ 𝑖 = 𝜆+

PLM

N

𝑒IJ ⋅
𝜆P

𝑗!
⋅ (𝑗 + 1)

Proof.

= 𝜆 +
PLM

N

𝑒IJ ⋅
𝜆P

𝑗!
⋅ 𝑗 ++

PLM

N

𝑒IJ ⋅
𝜆P

𝑗!
= 𝜆K + 𝜆

= 𝔼[𝑋] = 𝜆 = 1
Similar to the previous proof 
Verify offline. 

Var 𝑋 = 𝔼[𝑋0] − 𝔼[𝑋]0= 𝜆0 + 𝜆 − 𝜆0 = 𝜆

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!
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This Photo by Unknown Author 
is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Bao_Bao
https://creativecommons.org/licenses/by-sa/3.0/


Poisson Random Variables
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Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

 𝑃 𝑋 = 𝑖 = 𝑒&% ⋅ %
0

!!
	

This Photo by Unknown Author is licensed 
under CC BY-NC

Poisson approximates binomial when:
    𝑛 is very large, 𝑝 is very small, and   𝜆 = 𝑛𝑝	is “moderate” 
      e.g. (𝑛	 > 	20	and 𝑝	 < 	0.05 ),  ( 𝑛	 > 	100	and 𝑝	 < 	0.1)

Formally, Binomial approaches Poisson in the limit as 
𝑛	 → 	∞	(equivalently, 𝑝	 → 	0) while holding 𝑛𝑝	 = 	 𝜆

https://futurism.com/meet-axolotl-mexican-walking-fish
https://creativecommons.org/licenses/by-nc/3.0/


Probability Mass Function –  Convergence of Binomials
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𝜆 = 5 
𝑝 = Q
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𝑎𝑠	𝑛 → ∞, Bin(𝑛, 𝑝 = 	𝜆/𝑛) → Poi(𝜆)



From Binomial to Poisson
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𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝T 1 − 𝑝 RIT

𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Poi(𝜆)

𝑃 𝑋 = 𝑘 = 𝑒&% ⋅
𝜆2

𝑘!
𝐸 𝑋 = 𝜆

Var 𝑋 = 𝜆

𝑛 → ∞
𝑛𝑝 = 𝜆

𝑝 =
𝜆
𝑛
→ 0



Example -- Approximate Binomial Using Poisson 

Consider sending bit string over a network
• Send bit string of length 𝑛	 = 	10!

• Probability of (independent) bit corruption is 𝑝	 = 	10"#
What is probability that message arrives uncorrupted?

Using 𝑋	~	Poi(𝜆	 = 	𝑛𝑝	 = 	10! ⋅ 10"#	= 	0.01)

Using 𝑌	~	Bin(10!, 10"#)
𝑃(𝑌 = 0) 	≈ 	0.990049829
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𝑃 𝑋 = 0 = 𝑒&% ⋅
𝜆-

0!
= 𝑒&-.-# ⋅

0.01-

0!
≈ 0.990049834
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This Photo by Unknown Author is licensed under CC BY-SA-NC

http://redpandazine.com/2016/01/28/red-panda-pet/
https://creativecommons.org/licenses/by-nc-sa/3.0/


Sum of Independent Poisson RVs 
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Theorem. Let 𝑋~Poi(𝜆#) and 𝑌~Poi(𝜆0)	be independent such that 𝜆 =
𝜆# + 𝜆0. Let 𝑍 = 𝑋 + 𝑌.   For all 𝑧 = 0,1,2,3…,

 𝑃 𝑍 = 𝑧 = 𝑒&% ⋅ %
1

4!
	

More generally, let 𝑋#~Poi 𝜆# , ⋯ , 𝑋$~Poi(𝜆$) independent such that 
𝜆 = Σ!𝜆!. Let 𝑍 = Σ!𝑋!  

 𝑃 𝑍 = 𝑧 = 𝑒&% ⋅ %
1

4!
	

i.e., 𝑍~	Poi(𝜆 = 𝜆# + 𝜆0) 

i.e., 𝑍~	Poi(𝜆 = ∑! 𝜆!) 



Sum of Independent Poisson RVs 
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𝑃 𝑍 = 𝑧 =	?	
1. 	𝑃 𝑍 = 𝑧 = Σ5"-4 	𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗
2. 	𝑃 𝑍 = 𝑧 = Σ5"-. 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗
3. 	𝑃 𝑍 = 𝑧 = Σ5"-4 𝑃 𝑌 = 𝑧 − 𝑗|𝑋 = 𝑗 	𝑃(𝑋 = 𝑗)
4.  𝑃 𝑍 = 𝑧 = Σ5"-4 𝑃 𝑌 = 𝑧 − 𝑗|𝑋 = 𝑗

pollev.com/stefanotessaro617
A. All of them are right 
B. The first 3 are right 
C. Only 1 is right
D. Don’t know 

Theorem. Let 𝑋~Poi(𝜆#) and 𝑌~Poi(𝜆0)	be independent such that 𝜆 =
𝜆# + 𝜆0. Let 𝑍 = 𝑋 + 𝑌.   For all 𝑧 = 0,1,2,3…,

 𝑃 𝑍 = 𝑧 = 𝑒&% ⋅ %
1

4!
	



Proof
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𝑃 𝑍 = 𝑧 = Σ5"-4 𝑃 𝑋 = 𝑗, 𝑌 = 𝑧 − 𝑗

= Σ5"-4 𝑃 𝑋 = 𝑗)	𝑃(𝑌 = 𝑧 − 𝑗 = Σ5"-4 	 𝑒&%2 ⋅
𝜆#
5

𝑗!
⋅ 𝑒&%3 ⋅

𝜆0
4&5

𝑧 − 𝑗!

= 𝑒&%2&%3 	Σ5"-4 	 ⋅
1

𝑗! 𝑧 − 𝑗!
⋅ 𝜆#

5𝜆0
4&5

= 𝑒&% 	Σ5"-4 𝑧!
𝑗! 𝑧 − 𝑗!

⋅ 𝜆#
5𝜆0

4&5 1
𝑧!

= 𝑒&% ⋅ 𝜆# + 𝜆0 4 ⋅ #
4!
= 𝑒&% ⋅ 𝜆4 ⋅ #

4!

Law of total probability

Independence

Binomial 
Theorem
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General principle: 
• Events happen at an average rate 

of 𝜆 per time unit 
• Number of events happening at a 

time unit 𝑋 is distributed 
according to Poi(𝜆) 

Definition. A Poisson random variable 𝑋	with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

 𝑃 𝑋 = 𝑖 = 𝑒&% ⋅ %
0

!!
	

• Poisson approximates Binomial when 𝑛 is large, 
𝑝 is small, and 𝑛𝑝 is moderate

• Sum of independent Poisson is still a Poisson

Summary Poisson Random Variables



Next

• Continuous Random Variables
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Often we want to model experiments where the outcome is 
not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.

25

0 1𝑇 = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

½𝑃 𝑇 ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 0.2 ≤ 𝑇 ≤ 0.5 =

0 10.5

0.5 − 0.2 = 0.3

0.2
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 𝑇 = 0.5 =

0 10.5

0



Bottom line

• This gives rise to a different type of random variable
• 𝑃 𝑇 = 𝑥 = 0 for all 𝑥 ∈ [0,1]
• Yet, somehow we want
– 𝑃 𝑇 ∈ [0,1] = 1
– 𝑃 𝑇 ∈ [𝑎, 𝑏] = 𝑏 − 𝑎
– …

• How do we model the behavior of 𝑇?

29


