CSE 312 Foundations of Computing II

Lecture 11: Zoo of Discrete RVs

Review Variance – Properties

Definition. The **variance** of a (discrete) RV is

 $Var(X) = E[(X - E[X])^{2}] = \sum_{x} p_{x}(x) \cdot (x - E[X])^{2}$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = E[X^2] - E[X]^2$

Review Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $Var(X + Y) = Var(X) + Var(Y)$

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $Var | >$ $i = 1$ \overline{n} X_i = \sum_i & \overline{n} $Var(X_i)$

Motivation for "Named" Random Variables

Random Variables that show up all over the place.

– Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Welcome to the Zoo! (Preview) **head with the**

$$
X \sim \text{Unif}(a, b)
$$
\n
$$
P(X = k) = \frac{1}{b - a + 1}
$$
\n
$$
\mathbb{E}[X] = \frac{a + b}{2}
$$
\n
$$
Var(X) = \frac{(b - a)(b - a + 2)}{12}
$$
\n
$$
Var(X) = p(1 - p)
$$
\n
$$
Var(X) = \frac{1}{p^2}
$$
\n
$$
Var(X) = \frac{1 - p}{p^2}
$$
\n
$$
Var(X) = \frac{r(1 - p)}{p^2}
$$
\n
$$
Var(X) = \frac{K(N - K)(N - n)}{N^2(N - 1)}
$$

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and Other Random Variables

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (integer) value between integers a and b (inclusive), is uniform.

Notation:

PMF:

Expectation:

Variance:

Example: value shown on one roll of a fair die

Discrete Uniform Random Variables

12

A discrete random variable **equally likely** to take any (integer) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \text{Unif}(a, b)$

PMF:
$$
P(X = i) = \frac{1}{b - a + 1}
$$

\n**Expectation:** $E[X] = \frac{a+b}{2}$
\n**Variance:** $Var(X) = \frac{(b-a)(b-a+2)}{2}$

Example: value shown on one roll of a fair die is Unif(1,6):

• $P(X = i) = 1/6$

•
$$
\mathbb{E}[X] = 7/2
$$

•
$$
Var(X) = 35/12
$$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and Other Random Variables

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p , and 0 ("Failure") otherwise. X is called a Bernoulli random variable. **Notation:** $X \sim \text{Ber}(p)$ **PMF:** $P(X = 1) = p$, $P(X = 0) = 1 - p$ **Expectation: Variance:** Poll:

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p , and 0 ("Failure") otherwise. *X* is called a Bernoulli random variable. **Notation:** $X \sim \text{Ber}(p)$ **PMF:** $P(X = 1) = p$, $P(X = 0) = 1 - p$ **Expectation:** $E[X] = p$ Note: $E[X^2] = p$ **Variance:** $Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1-p)$ Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails
- Any indicator RV

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and Other Random Variables

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Examples:

- $#$ of heads in n coin flips
- # of 1s in a randomly generated n bit string
- $#$ of servers that fail in a cluster of n computers
- \bullet # of bit errors in file written to disk
- $#$ of elements in a bucket of a large hash table

Poll: **pollev.com/stefanotessaro617** $Pr(X = k)$ A. $p^{k}(1-p)^{n-k}$ $B.$ np C. $\binom{n}{k} p^k (1-p)^{n-k}$ D. $\binom{n}{n-k} p^k (1-p)^{n-k}$

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$ **PMF:** $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ **Expectation: Variance:**

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^n Y_i$

Notation: $X \sim Bin(n, p)$ **PMF:** $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ **Expectation:** $\mathbb{E}[X] = np$ **Variance:** $Var(X) = np(1 - p)$

Mean, Variance of the Binomial

"i.i.d." is a commonly used phrase. It means "independent & identically distributed"

If $Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$ and independent (i.i.d.), then $X = \sum_{i=1}^{n} Y_i$, $X \sim Bin(n, p)$

Claim
$$
\mathbb{E}[X] = np
$$

\n
$$
\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = n\mathbb{E}[Y_1] = np
$$
\n**Claim** $\text{Var}(X) = np(1 - p)$

$$
Var(X) = Var\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} Var(Y_i) = nVar(Y_1) = np(1 - p)
$$

Binomial PMFs

 0.30 0.30 0.25 0.25 0.20 0.20 $P(X=K)$ $P(X=K)$ 0.15 0.15 $\mu \pm \sigma$ 0.10 0.10 0.05 0.05 0.00 0.00 10 $\mathbf 2$ $\pmb{0}$ 4 6 8 $\mathsf 0$

 $\mathsf k$

PMF for $X \sim Bin(10, 0.5)$

PMF for $X \sim Bin(10, 0.25)$

Binomial PMFs

PMF for $X \sim Bin(30, 0.5)$

PMF for $X \sim Bin(30,0.1)$

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).

Let X be the number of corrupted bits.

What is $E[X]$?

Brain Break

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and Other Random Variables

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success.

 \overline{X} is called a Geometric random variable with parameter \overline{p} .

```
Notation: X \sim \text{Geo}(p)PMF: 
Expectation:
Variance:
```
Examples:

- \bullet # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success.

 \overline{X} is called a Geometric random variable with parameter \overline{p} .

Notation: $X \sim \text{Geo}(p)$ **PMF:** $P(X = k) = (1 - p)^{k-1}p$ **Expectation:** $E[X] =$ $\mathbf 1$ \overline{p} $$ $1-p$ p^2

Examples:

- \bullet # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is $\mathbb{E}[X]$?

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim \text{Geo}(p)$.

X is called a Negative Binomial random variable with parameters r, p .

Notation: $X \sim \text{NegBin}(r, p)$ **PMF:** $P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$ **Expectation:** $E[X] =$ \boldsymbol{r} \overline{p} $$ $r(1-p)$ p^2

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. *X* is called a Hypergeometric RV with parameters N, K, n.

```
Notation: X \sim \text{HypGeo}(N, K, n)PMF: P(X = k) =\boldsymbol{K}\overline{k}N-Kn-k\overline{N}\boldsymbol{n}Expectation: \mathbb{E}[X] = n\overline{K}\overline{N}Variance: Var(X) = nK(N-K)(N-n)N^2(N-1)
```
Hope you enjoyed the zoo! is a Owe TANA

$X \sim \text{Unif}(a, b)$	$X \sim \text{Ber}(p)$	$X \sim \text{Bin}(n, p)$
$P(X = k) = \frac{1}{b - a + 1}$	$P(X = 1) = p, P(X = 0) = 1 - p$	$P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$
$\mathbb{E}[X] = \frac{a + b}{2}$	$\mathbb{E}[X] = p$	$\mathbb{E}[X] = np$
$Var(X) = \frac{(b - a)(b - a + 2)}{12}$	$Var(X) = p(1 - p)$	$Var(X) = np(1 - p)$
$X \sim \text{Geo}(p)$	$X \sim \text{NegBin}(r, p)$	$X \sim \text{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k-1}p$	$P(X = k) = \binom{k-1}{r-1}p^r(1-p)^{k-r}$	$P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$\mathbb{E}[X] = \frac{1}{p}$	$\mathbb{E}[X] = \frac{r}{p}$	$\mathbb{E}[X] = n\frac{K}{N}$
$Var(X) = \frac{1 - p}{p^2}$	$Var(X) = \frac{r(1 - p)}{p^2}$	$Var(X) = n\frac{K(N - K)(N - n)}{N^2(N - 1)}$

Preview: Poisson

Model: # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent