CSE 312 Foundations of Computing II

Lecture 10: Bloom Filters

Announcements

- PSet 3 due today
- PSet 2 returned yesterday
- PSet 4 posted this evening
	- Last PSet prior to midterm (midterm is in exactly two weeks from now)
	- Midterm info will follow soon
	- PSet 5 will only come after the midterm in two weeks

• An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of a <u>large</u> set U.

Example. $U =$ set of 128 bit strings $S =$ subset of strings of interest $|U| \approx 2^{128}$ $|S| \approx 1000$

Two goals:

- **1. Very fast** (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- **2. Minimal storage** requirements.

Naïve Solution I – Constant Time

Idea: Represent S as an array A with $|U|$ entries.

$$
A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}
$$

$$
S = \{0, 2, ..., K\}
$$

Membership test: To check. $x \in S$ just check whether $A[x] = 1$.

$$
\rightarrow \text{constant time: } \bigoplus \bigoplus
$$

Storage: Require storing $|U|$ bits, even for small S.

Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$$
S = \{0, 2, ..., K\}
$$

\overrightarrow{B} \overrightarrow{E} **Storage:** Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$

(Can be made logarithmic by using a tree)

Less naïve solution – Hash Table

Idea: Map elements in S into an array A of size m using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: *m* elements (size of array)

Less naïve solution – Hash Table

Idea: Map elements in S into an array A of size m using a hash function **h**

Challenge 2: Ensure $m = O(|S|)$ **Challenge 1:** Ensure $h(x) \neq h(y)$ for *most* $x, y \in S$ **Membership test:** To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$ **Storage:** *m* elements (size of array)

Hashing: collisions

Collisions occur when $h(x) = h(y)$ for some distinct $x, y \in S$, i.e., two elements of set map to the same location

• Common solution: chaining – at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function \bm{h} is good iff it
	- $-$ distributes elements uniformly across the m array locations so that
	- pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored, i.e., $m = \Omega(|S|)$

In some cases, $|S|$ is huge, or not known a-priori …

> Can we do better!?

Bloom Filters to the rescue

(Named after Burton Howard Bloom)

[This Photo](http://blog.bubbasgarage.com/2019/04/photos-from-biltmore-blooms.html) by Unknown Author is licensed under [CC BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/3.0/)

Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
	- But: Ridiculously space efficient
- Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
	- 1. **add** (x) adds $x \in U$ to the set S
	- 2. **contains** (x) ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False \rightarrow definitely not in S
- True \rightarrow **possibly** in S [i.e. we could have *false positives*]

Bloom Filters – Why Accept False Positives?

- **Speed** both **add** and **contains** very very fast.
- **Space** requires a miniscule amount of space relative to storing all the actual items that have been added. – Often just 8 bits per inserted item!
- **Fallback mechanism** can distinguish false positives from true positives with extra cost
	- Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
	- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
	- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters – More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

What you can't do with Bloom filters

- There is no delete operation
	- $-$ Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of S

But what you *can* do makes them very effective!

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array - "the Bloom filter"

- k rows $t_1, ..., t_k$, each of size m
- Think of each row as an m -bit vector

k different hash functions $h_1, ..., h_k$: $U \rightarrow [m]$

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function
$$
INITIALIZE(k, m)
$$

\n**for** $i = 1, ..., k$: **do**
\n t_i = new bit vector of *m* 0s

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function $ADD(x)$ **for** $i = 1, ..., k$ **: do** $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS (x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

Bloom Filters - Initialization

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

 \blacksquare function INITIALIZE (k, m) **for** $i = 1, ..., k$ **: do** t_i = new bit vector of *m* 0s

Bloom Filters: Add

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 $h_1($ "thisisavirus.com") $\rightarrow 3^-$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

 $h_2($ "thisisavirus.com") \rightarrow 2 $h_1($ "thisisavirus.com") $\rightarrow 3^$ add("thisisavirus.com")

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") $h_2($ "thisisavirus.com") \rightarrow 2 $h_3($ "thisisavirus.com") $\rightarrow 5$ $h_1($ "thisisavirus.com") $\rightarrow 3^-$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k: \textbf{do}$
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") $h_2($ "thisisavirus.com") \rightarrow 2 $h_1($ "thisisavirus.com") $\rightarrow 3^$ $h_3($ "thisisavirus.com") $\rightarrow 5$

Bloom Filters: Contains

function CONTAINS (x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, Returns False otherwise

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function CONTAINS (x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

contains("thisisavirus.com")

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function CONTAINS (x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 3$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

contains("thisisavirus.com")

 $h_2($ "thisisavirus.com") \rightarrow 2 $h_1($ "thisisavirus.com") $\rightarrow 3^-$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

add("totallynotsuspicious.com")

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") $h_1($ "totallynotsuspicious.com") \rightarrow 2

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") $h_2($ "totallynotsuspicious.com") \rightarrow 1 $h_1($ "totallynotsuspicious.com") \rightarrow 2

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k: \textbf{do}$
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") $h_2($ "totallynotsuspicious.com") \rightarrow 1 $h_1($ "totallynotsuspicious.com") \rightarrow 2 $h_3($ "totallynotsuspicious.com") $\rightarrow 5$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function
$$
\text{ADD}(x)
$$

for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") $h_2($ "totallynotsuspicious.com") \rightarrow 1 $h_1($ "totallynotsuspicious.com") \rightarrow 2 $h_3($ "totallynotsuspicious.com") $\rightarrow 5$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function CONTAINS (x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

contains("verynormalsite.com")

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

function CONTAINS (x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 3^-$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

contains("verynormalsite.com")

 $h_2($ "verynormalsite.com") \rightarrow 1 h_1 ("verynormalsite.com") $\rightarrow 3^-$

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

Bloom filter of length $m = 5$ that uses $k = 3$ hash functions

Brain Break

Western

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that **contains** (x) returns true if $add(x)$ was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_i(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability – Events

Assume we perform $\mathbf{add}(x_1)$, ..., $\mathbf{add}(x_n)$ + **contains** (x) for $x \notin \{x_1, ..., x_n\}$

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}\$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}\$ Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$
P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z)
$$

LTP

False positive probability – Events $P(E_i^c | h_i(x) = z) = P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z | h_i(x) = z)$ Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$ $= \prod P(h_i(x_j) \neq z)$ $j=1$ \boldsymbol{n} $=$ $\vert \ \ \vert$ $j=1$ \boldsymbol{n} $1 -$ 1 \overline{m} $= | 1 -$ 1 \overline{m} \boldsymbol{n} $P(E_i^c) = \sum$ \overline{m} $P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z) = | 1 - z|$ 1 \overline{m} \boldsymbol{n} Independence of values $= P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z)$ of h_i on different inputs Outputs of h_i uniformly spread |

 $z=1$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in \{\mathbf{h}_i(x_1), ..., \mathbf{h}_i(x_n)\}\$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$
P(E_i^c) = \left(1 - \frac{1}{m}\right)^n
$$

$$
\text{FPR} = \prod_{i=1}^{k} \left(1 - P(E_i^c) \right) = \left(1 - \left(1 - \frac{1}{m} \right)^n \right)^k
$$

False Positivity Rate – Example

$$
\text{FPR} = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k
$$

e.g.,
$$
n = 5,000,000
$$

\n $k = 30$
\n $m = 2,500,000$
\nFPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k = 30$ and $m = 2,500,000$

(optimistic) $5,000,000 \times 40B = 200MB$

Hash Table Bloom Filter

$2,500,000 \times 30 = 75,000,000$ bits

 $< 10 MB$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3% $100000 \times 0.03 \times 500 \text{ms} + 2000 \times 500 \text{ms}$ $1ms +$ 102000 ≈ 25.51 ms Bloom filter lookup malicious URLs 0.5 seconds DB lookup false positives total URLs

Bloom Filters typical of….

… randomized algorithms and randomized data structures.

- **Simple**
- **Fast**
- **Efficient**
- **Elegant**
- **Useful!**