CSE 312
Foundations of Computing Il

Lecture 10: Bloom Filters

Announcements

* PSet 3 due today
* PSet 2 returned yesterday
* PSet 4 posted this evening

— Last PSet prior to midterm (midterm is in exactly two weeks from
now)

— Midterm info will follow soon
— PSet 5 will only come after the midterm in two weeks

Today

 An Application: Bloom Filters! @

Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings |U| ~ 2128
5 = subset of strings of interest S| ~ 1000

Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € §?”
' forany x € U.

2. Minimal storage requirements.

Naive Solution | - Constant Time

— Al = {1 ifx €S

Idea: Represent S as an array A with |U| entries. 0 ifxegs

ICHN R R N I I
1 0 1 0 1 0 0

S =102, .., K

Membership test: To check. X € S just check whether A|x] = 1.

— constant time! é

Storage: Require storing |U| bits, even for small S. %;‘ @

Naive Solution Il - Small Storage

Idea: Represent S as a list with |S| entries.

S=1{02, .., K ‘ o‘/\) T/\ f\

Storage: Grows with [S| only é

Membership test: Check x € S requires time linear in |5

(Can be made logarithmic by using a tree) %I @

Less naive solution — Hash Table
Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether A|h(x)| = x

Storage: m elements (size of array)

hash function h: U — [m] [m] ={1,..,m}

Less naive solution — Hash Table
Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether Alh(x)| = x

Storage: m elements (size of array)

Challenge 1: Ensure

h(x) # h(y) for
most x,y € §

Challenge 2: Ensure
m = 0(|S])

\

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct x,y € S,
l.e., two elements of set map to the same location

Common solution: chaining — at each 1j 3]4 *SL e |m
X

location (bucket) in the table, keep g @

linked list of all elements that hash there, ~® ") ="

=
=
N

Good hash functions to keep collisions low

* The hash function h is good iff it
— distributes elements uniformly across the m array locations so that
— pairs of elements are mapped independently

““Universal Hash Functions” — see CSE 332

10

Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and

lookup times are small. In some cases, | S| is huge,

* However, they need at least as much / or not known a-priori ...
space as all the data being stored, —

Can we do

better!?

|
2 . SO .
.\ S i / »;-,.‘,x}‘ NN =
. i { Ly ; e 4\ \! e e
L = ; B 7 a9 R
| | - 4| ‘\\\ ‘:' /i LN ‘? b \ ~ -
e /!
Y S | . 5 ’
f g 2\ 3\ € =
] 4 { S 5
4] & ¢ e)
% ' A s o N
| o A L ;
Gh) b

~ WS

| Bloom Filtes
to the rescue

B (Named after Burton Howard Bloom)

TP F

http://blog.bubbasgarage.com/2019/04/photos-from-biltmore-blooms.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Bloom Filters — Main points

Probabilistic data structure.

Close cousins of hash tables.
- But: Ridiculously space efficient

Occasional errors, specifically false positives.

13

Bloom Filters

Stores information about a set of elements S € U.
Supports two operations:
1. add(x)-adds x € U tothesetS

2. contains(x) —ideally: trueif x € S, false otherwise

Instead, relaxed guarantees:
- False — definitely notin S
- True — possibly in S
[i.e. we could have false positives]

14

Bloom Filters - Why Accept False Positives?

* Speed - both add and contains very very fast.

* Space - requires a miniscule amount of space relative to
storing all the actual items that have been added.

— Often just 8 bits per inserted item!

* Fallback mechanism - can distinguish false positives from
true positives with extra cost

— Ok if mostly negatives expected + low false positive rate

15

Bloom Filters: Application

Google Chrome has a database of malicious URLs, but it takes a long
time to query.

Want an in-browser structure, so needs to be efficient and be space-
efficient

Want it so that can check if a URL is in structure:

If return False, then definitely not in the structure (don’t need to

do expensive database lookup, website is safe)
If return True, the URL may or may not be in the structure. Have to

perform expensive lookup in this rare case.

16

Bloom Filters - More Applications

* Any scenario where space and efficiency are important.

* Used alotin networking

* In distributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

* Google BigTable uses Bloom filters to reduce disk lookups

* |Internetrouters often use Bloom filters to track blocked IP
addresses.

e And on and on...

17

What you can’t do with Bloom filters

* Thereis no delete operation

— Once you have added something to a Bloom filter for S, it stays
* You can’t use a Bloom filter to name any element of S

But what you can do makes them very effective!

18

Bloom Filters - Ingredients

Basic data structure is a k X m binary array - “the Bloom filter”
* krowsty,...,t,,eachofsizem
 Think of each row as an m-bit vector

k different hash functions hy, ..., h;,: U — |m|

19

Bloom Filters — Three operations

e Set up Bloom filter for S = @

* Update Bloom filter for S « S U {x}

e Checkifx €S

function inimiaLize(k, m)
fori =1,..,k:do

t; = new bit vector of m 0s

function Abp(x)
fori=1,..,k:do

20

Bloom Filters - Initialization

Size of array

Number of ated 1

el ass?]c;]a eh 0

functions eac . as
function.

function inmiALizE(k, m)

. _ _, for each hash
fori=1,..,k:do function, initialize

t; = new bit vector of m 0s an empty bit
vector of size m

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

1 2
.

t, 0 0
t, 0 0
t, 0 0

Bloom Filters: Add

function AbD(x)
fori = 1, ..., k: d0 | ————— for each hash

Li [hi (X)] = 1 function h,

Index into i-th bit-vector, at index produced h,(x) — result of hash
by hash function and setto 1 function h; on x

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)
function ADD(X) h,("thisisavirus.com”) — 3
fori=1,.. k:do

ti[hi(x)] =1

Index 1 2 3
—>
t, 0 0 0
t, 0 0 0
t; 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(X) h,(“thisisavirus.com”) — 3
fori=1,..., k:do h,(“thisisavirus.com”) — 2
t;[hi(x)] =1
Index 1 2 3
—>

t; 0 0 1

t, 0 0 0

t; 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(X) h,(“thisisavirus.com”) — 3
fori =1,...,k: do h,(“thisisavirus.com”) — 2
ti[hi(x)] =1 hy(“thisisavirus.com”) — 5

Index 1 2 3

—

51 0 0 1

L 0 1 0

& 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(X) h,(“thisisavirus.com”) — 3
fori =1,...,k: do h,(“thisisavirus.com”) — 2
ti[hi(x)] =1 hy(“thisisavirus.com”) — 5

Index 1 2 3

—

51 0 0 1

L 0 1 0

& 0 0 0

Bloom Filters: Contains

function conTaINs(x)

return ¢, [k, (x)] == 1A t,[h,(x)] == 1 A - A £ [h ()] == 1

Returns True if the bit vector t; for each hash function has bit 1 at
Index determined by h,(x),
Returns False otherwise

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 1 2 3 4
—>
t, 0 0 1 0
t, 0 1 0 0
t; 0 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com?)

h,(“thisisavirus.com”) — 3

Index 1 2 3 4
—>
t, 0 0 1 0
t, 0 1 0 0
t; 0 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 3
h,(“thisisavirus.com”) — 2

Index 1 2 3 4
—>
t, 0 0 1 0
t, 0 1 0 0
t; 0 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 3
h,(“thisisavirus.com”) — 2

h;(“thisisavirus.com”) — 5

Index 1 2 3 4
—>
t, 0 0 1 0
t, 0 1 0 0
t; 0 0 0 0

Bloom Filters: Example

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 3
h,(“thisisavirus.com”) — 2

h;(“thisisavirus.com”) — 5

3 4

1 0
t, 0 1 0 0
t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
function Aop(x)
fori=1,..,k:do

ti[hi(x)] =1

Index 1 2 3
—>
t, 0 0 1
t, 0 1 0
t; 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)
function ADD(x) h,(“totallynotsuspicious.com”) — 2
fori=1,.. k:do

ti[hi(x)] =1

Index 1 2 3 4
—>
t, 0 0 1 0
t, 0 1 0 0
t; 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)

function Aop(x) h,(“totallynotsuspicious.com”) — 2
fori=1,.. k:do h,(“totallynotsuspicious.com”) — 1
ti[hi(x)] =1
Index 1 2 3 4
—>

t, 0 1 1 0

t, 0 1 0 0

t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)

function Aop(x) h,(“totallynotsuspicious.com”) — 2
fori=1,.. k:do h,(“totallynotsuspicious.com”) — 1
t:[h; (x)] =1 h;("totallynotsuspicious.com”) — 5

Index 1 2 3 4

—>

t, 0 1 1 0

t, 1 1 0 0

t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

add(“totallvnotsuspicious.com”)

function Aop(x) h,(“totallynotsuspicious.com”) — 2
fori=1,.. k:do h,(“totallynotsuspicious.com”) — 1
t:[h; (x)] =1 h;("totallynotsuspicious.com”) — 5

Index 1 2 3 4

—>

t, 0 1 1 0

t, 1 1 0 0

t, 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

Index 1 2 3 4
—>
t, 0 1 1 0
t, 1 1 0 0
t; 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 3

Index 1 2 3 4
—>
t, 0 1 1 0
t, 1 1 0 0
t; 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 3
h,(“verynormalsite.com”) — 1

Index 1 2 3 4
—>
t, 0 1 1 0
t, 1 1 0 0
t; 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 3
h,(“verynormalsite.com”) — 1

h;(“verynormalsite.com”™) — 5

Index 1 2 3 4
—>
t, 0 1 1 0
t, 1 1 0 0
t; 0 0 0 0

Bloom Filters: False Positives

Bloom filter of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 3

h,(“verynormalsite.com”) — 1
h;(“verynormalsite.com”™) — 5

3 4

1 0
t, 1 1 0 0
t, 0 0 0 0

Brain Break

Analysis: False positive probability

Question: For an element x € U, what is the probability that
- contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the hq, ..., h;,

Assumptions for the analysis (somewhat stronger than for ordinary

hashing):

* Each h;(x) is uniformly distributed in [m] for all x and i

 Hash function outputs for each h; are mutually independent (not
just in pairs)

* Different hash functions are independent of each other

False positive probability — Events

Assume we perform add(x,), ...,add(x,,)
+ contains(x) forx & {xq, ..., x;,}

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,,)}

k
P(false positive) = P(E;NE, NN Ey) = HP(Ei)
i=1

/

h,, ..., h; independent

False positive probability — Events

Event E; holds iff h;(x) € {h;(x;), ..., h;(x,,)}
Event Ef holds iff h;(x) # h;(x;) and... and h;(x) # h;(x,,)

P(ES) =) P(Ri(x) = 2) - P(EF | hy(x) = 2)

LTP

47

Event E holds iff h;(x) # h;(x;) and ...

False positive probability — Events |and h,(x) # h;(x,)

P(E;| hi(x) =z) = P(hi(xy) # z,...,hj(x,) # z | hi(x) = z)

of h; on different inputs

Independence of values | _—»

SN ﬁP(hi(xj) £ 2)

Outputs of h; uniformly spread

— P(hl(xl) * Z, ...,hi(xn) = Z)

n

1 1)"
=2
‘p(Eic) = ZLP(hi(x) =2z) - P(Ef| hi(x) = 2z) = (1 _%>

False positive probability — Events

Event E; holds iff h;(x) € {h;(x;), ..., h;(x,,)}
Event E; holds iff h;(x) # h;(x,) and ... and h;(x) # h;(x,)

1 n
P(ES) = (1 ——)
m

mm) PR - lj(l - P(E)) = (1 B (1 B %)")

k

49

False Positivity Rate — Example
1 n
R =(1-(1-))
m

e.g.,n = 5,000,000 e
L — 20) FPR=1.28%

m = 2,500,000

k

50

Comparison with Hash Tables - Space

o Google storing 5 million URLs, each URL 40 bytes.
e Bloom filterwithk = 30andm = 2,500,000

Hash Table

(optimistic)
5,000,000 x 40B = 200MB

Bloom Filter

2,500,000 x 30 = 75,000,000 bits

< 10 MB

Time

e Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
e 0.5seconds to dolookup in the database, 1ms for lookup in Bloom filter.

S ose the false positive rate is 3%
© °UPP POSTEY 53 0.5 seconds DB lookup

false positives / X

100000 % 0.03 x 500ms +2000 X 500 ms

Ims + ~ 25.51ms
T 102000

total URLs malicious URLs

Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

* Simple

* Fast
 Efficient
* Elegant
e Useful!

53

	Slide 1: CSE 312 Foundations of Computing II Lecture 10: Bloom Filters
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Basic Problem
	Slide 5: Naïve Solution I – Constant Time
	Slide 6: Naïve Solution II – Small Storage
	Slide 7: Less naïve solution – Hash Table
	Slide 8: Less naïve solution – Hash Table
	Slide 9: Hashing: collisions
	Slide 10: Good hash functions to keep collisions low
	Slide 11: Hashing: summary
	Slide 12: Bloom Filters to the rescue (Named after Burton Howard Bloom)
	Slide 13: Bloom Filters – Main points
	Slide 14: Bloom Filters
	Slide 15: Bloom Filters – Why Accept False Positives?
	Slide 16: Bloom Filters: Application
	Slide 17: Bloom Filters – More Applications
	Slide 18: What you can’t do with Bloom filters
	Slide 19: Bloom Filters – Ingredients
	Slide 20: Bloom Filters – Three operations
	Slide 21: Bloom Filters - Initialization
	Slide 22: Bloom Filters: Example
	Slide 23: Bloom Filters: Add
	Slide 24: Bloom Filters: Example
	Slide 25: Bloom Filters: Example
	Slide 26: Bloom Filters: Example
	Slide 27: Bloom Filters: Example
	Slide 28: Bloom Filters: Contains
	Slide 29: Bloom Filters: Example
	Slide 30: Bloom Filters: Example
	Slide 31: Bloom Filters: Example
	Slide 32: Bloom Filters: Example
	Slide 33: Bloom Filters: Example
	Slide 34: Bloom Filters: False Positives
	Slide 35: Bloom Filters: False Positives
	Slide 36: Bloom Filters: False Positives
	Slide 37: Bloom Filters: False Positives
	Slide 38: Bloom Filters: False Positives
	Slide 39: Bloom Filters: False Positives
	Slide 40: Bloom Filters: False Positives
	Slide 41: Bloom Filters: False Positives
	Slide 42: Bloom Filters: False Positives
	Slide 43: Bloom Filters: False Positives
	Slide 44: Brain Break
	Slide 45: Analysis: False positive probability
	Slide 46: False positive probability – Events
	Slide 47: False positive probability – Events
	Slide 48: False positive probability – Events
	Slide 49: False positive probability – Events
	Slide 50: False Positivity Rate – Example
	Slide 51: Comparison with Hash Tables - Space
	Slide 52: Time
	Slide 53: Bloom Filters typical of….

