
CSE 312

Foundations of Computing II

Lecture 10: Bloom Filters

1

Announcements

• PSet 3 due today

• PSet 2 returned yesterday

• PSet 4 posted this evening

– Last PSet prior to midterm (midterm is in exactly two weeks from
now)

– Midterm info will follow soon

– PSet 5 will only come after the midterm in two weeks

2

Today

• An Application: Bloom Filters!

3

Basic Problem

4

Problem: Store a subset 𝑆 of a large set 𝑈.

Example. 𝑈 = set of 128 bit strings
𝑆 = subset of strings of interest

𝑈 ≈ 2128

𝑆 ≈ 1000

Two goals:

1. Very fast (ideally constant time) answers to queries “Is 𝑥 ∈ 𝑆?”
for any 𝑥 ∈ 𝑈.

2. Minimal storage requirements.

Naïve Solution I – Constant Time

5

Idea: Represent 𝑆 as an array A with |𝑈| entries.

𝟎 𝟏 𝟐 … 𝑲 …

𝟏 𝟎 𝟏 𝟎 𝟏 … 𝟎 𝟎

A 𝑥 = ቊ
1 if 𝑥 ∈ 𝑆
0 if 𝑥 ∉ 𝑆

Membership test: To check. 𝑥 ∈ 𝑆 just check whether A 𝑥 = 1.

Storage: Require storing |𝑈| bits, even for small 𝑆.

 → constant time!

𝑆 = {0,2, … , K}

Naïve Solution II – Small Storage

6

Idea: Represent 𝑆 as a list with |𝑆| entries.

0 2 … K

Storage: Grows with |𝑆| only

Membership test: Check 𝑥 ∈ 𝑆 requires time linear in |𝑆|

(Can be made logarithmic by using a tree)

𝑆 = {0,2, … , K}

Less naïve solution – Hash Table

7

Idea: Map elements in 𝑆 into an array 𝐴 of size 𝑚 using a hash function 𝐡

hash function 𝒉: 𝑈 → [𝑚]

1
2

3
4

5

K-1
K

1

2

3

4

5

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝒉(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)

𝑚 = {1, . . , 𝑚}

Less naïve solution – Hash Table

8

Challenge 2: Ensure
 𝑚 = 𝑂(𝑆)

Challenge 1: Ensure
𝒉 𝑥 ≠ 𝒉 𝑦 for
most 𝑥, 𝑦 ∈ 𝑆

Idea: Map elements in 𝑆 into an array 𝐴 of size 𝑚 using a hash function 𝐡

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)

Hashing: collisions

Collisions occur when 𝒉 𝑥 = 𝒉 𝑦 for some distinct 𝑥, 𝑦 ∈ 𝑆,

i.e., two elements of set map to the same location

• Common solution: chaining – at each

location (bucket) in the table, keep

linked list of all elements that hash there.

9

1 2 3 4 5 𝑚…

𝑥1

𝑥3

𝑥2

𝒉 𝑥1 = 𝒉 𝑥3

Good hash functions to keep collisions low

• The hash function 𝒉 is good iff it

– distributes elements uniformly across the 𝑚 array locations so that

– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332

10

Hashing: summary

11

Hash Tables

• They store the data itself

• With a good hash function, the data
is well distributed in the table and
lookup times are small.

• However, they need at least as much
space as all the data being stored,
i.e., 𝑚 = Ω(𝑆)

Can we do
better!?

In some cases, 𝑆 is huge,
or not known a-priori …

Bloom Filters

 to the rescue
(Named after Burton Howard Bloom)

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://blog.bubbasgarage.com/2019/04/photos-from-biltmore-blooms.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Bloom Filters – Main points

• Probabilistic data structure.

• Close cousins of hash tables.

– But: Ridiculously space efficient

• Occasional errors, specifically false positives.

13

Bloom Filters

• Stores information about a set of elements 𝑆 ⊆ 𝑈.

• Supports two operations:

1. add(𝑥) - adds 𝑥 ∈ 𝑈 to the set 𝑆

2. contains(𝑥) – ideally: true if 𝑥 ∈ 𝑆, false otherwise

14

Instead, relaxed guarantees:
• False → definitely not in 𝑆
• True → possibly in 𝑆

[i.e. we could have false positives]

Bloom Filters – Why Accept False Positives?

• Speed – both add and contains very very fast.

• Space – requires a miniscule amount of space relative to
storing all the actual items that have been added.

– Often just 8 bits per inserted item!

• Fallback mechanism – can distinguish false positives from
true positives with extra cost

– Ok if mostly negatives expected + low false positive rate

15

Bloom Filters: Application

• Google Chrome has a database of malicious URLs, but it takes a long
time to query.

• Want an in-browser structure, so needs to be efficient and be space-
efficient

• Want it so that can check if a URL is in structure:
– If return False, then definitely not in the structure (don’t need to

do expensive database lookup, website is safe)
– If return True, the URL may or may not be in the structure. Have to

perform expensive lookup in this rare case.

16

Bloom Filters – More Applications

• Any scenario where space and efficiency are important.

• Used a lot in networking

• In distributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

• Google BigTable uses Bloom filters to reduce disk lookups

• Internet routers often use Bloom filters to track blocked IP
addresses.

• And on and on…

17

What you can’t do with Bloom filters

• There is no delete operation

– Once you have added something to a Bloom filter for 𝑆, it stays

• You can’t use a Bloom filter to name any element of 𝑆

But what you can do makes them very effective!

18

Bloom Filters – Ingredients

19

Basic data structure is a 𝑘 × 𝑚 binary array - “the Bloom filter”
• 𝑘 rows 𝑡1, … , 𝑡𝑘, each of size 𝑚
• Think of each row as an 𝑚-bit vector

𝑘 different hash functions 𝒉1, … , 𝒉𝑘: 𝑈 → [𝑚]

Bloom Filters – Three operations

• Set up Bloom filter for 𝑆 = ∅

• Update Bloom filter for 𝑆 ← 𝑆 ∪ {𝑥}

• Check if 𝑥 ∈ 𝑆

20

function INITIALIZE(𝑘, 𝑚)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖 = new bit vector of 𝑚 0s

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

function INITIALIZE(𝑘, 𝑚)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖 = new bit vector of 𝑚 0s

Size of array

associated to

each hash

function.

Number of

hash

functions

for each hash

function, initialize

an empty bit

vector of size 𝑚

Bloom Filters - Initialization

Index

→

1 2 3 4 5

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

function INITIALIZE(𝑘, 𝑚)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖 = new bit vector of 𝑚 0s

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

for each hash

function ℎ𝑖

Index into 𝑖-th bit-vector, at index produced

by hash function and set to 1

ℎ𝑖(𝑥) → result of hash

function ℎ𝑖 on 𝑥

Bloom Filters: Add

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Index

→

1 2 3 4 5

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

add(“thisisavirus.com”)

ℎ1(“thisisavirus.com”) → 3

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“thisisavirus.com”) → 2

ℎ1(“thisisavirus.com”) → 3

add(“thisisavirus.com”)

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 2

ℎ3(“thisisavirus.com”) → 5

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

ℎ1(“thisisavirus.com”) → 3

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 2

ℎ1(“thisisavirus.com”) → 3

ℎ3(“thisisavirus.com”) → 5

Returns True if the bit vector 𝑡𝑖 for each hash function has bit 1 at

 index determined by ℎ𝑖(𝑥),

Returns False otherwise

Bloom Filters: Contains

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

contains(“thisisavirus.com”)

Bloom Filters: Example

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

contains(“thisisavirus.com”)

True

Bloom Filters: Example

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ1(“thisisavirus.com”) → 3

contains(“thisisavirus.com”)

TrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“thisisavirus.com”) → 2

ℎ1(“thisisavirus.com”) → 3

contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“thisisavirus.com”) → 2

ℎ1(“thisisavirus.com”) → 3

ℎ3(“thisisavirus.com”) → 5

contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Since all conditions satisfied, returns True (correctly)

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“thisisavirus.com”) → 2

ℎ1(“thisisavirus.com”) → 3

ℎ3(“thisisavirus.com”) → 5

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

add(“totallynotsuspicious.com”)

Index

→

1 2 3 4 5

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ1(“totallynotsuspicious.com”) → 2

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 1

ℎ1(“totallynotsuspicious.com”) → 2

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 1

ℎ1(“totallynotsuspicious.com”) → 2

ℎ3(“totallynotsuspicious.com”) → 5

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
 for 𝑖 = 1, … , 𝑘: do

 𝑡𝑖[ℎ𝑖 𝑥] = 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 1

ℎ1(“totallynotsuspicious.com”) → 2

ℎ3(“totallynotsuspicious.com”) → 5

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

Bloom Filters: False Positives

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

True

Bloom Filters: False Positives

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ1(“verynormalsite.com”) → 3

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“verynormalsite.com”) → 1

ℎ1(“verynormalsite.com”) → 3

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“verynormalsite.com”) → 1

ℎ1(“verynormalsite.com”) → 3

ℎ3(“verynormalsite.com”) → 5

Index

→

1 2 3 4 5

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)

 return 𝑡1 ℎ1 𝑥 == 1 ∧ 𝑡2 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝑡𝑘 ℎ𝑘 𝑥 == 1

Since all conditions satisfied, returns True (incorrectly)

Bloom filter of length 𝑚 = 5 that uses 𝑘 = 3 hash functions

ℎ2(“verynormalsite.com”) → 1

ℎ1(“verynormalsite.com”) → 3

ℎ3(“verynormalsite.com”) → 5

Brain Break

Analysis: False positive probability

Question: For an element 𝑥 ∈ 𝑈, what is the probability that
contains(𝑥) returns true if add(𝑥) was never executed before?

Probability over what?!

Assumptions for the analysis (somewhat stronger than for ordinary
hashing):
• Each 𝒉𝑖 𝑥 is uniformly distributed in [𝑚] for all 𝑥 and 𝑖
• Hash function outputs for each 𝒉𝑖 are mutually independent (not

just in pairs)
• Different hash functions are independent of each other

Over the choice of the 𝒉1, … , 𝒉𝑘

False positive probability – Events

46

Assume we perform add 𝑥1 , … ,add 𝑥𝑛
+ contains(𝑥) for 𝑥 ∉ {𝑥1, … , 𝑥𝑛}

Event 𝐸𝑖 holds iff 𝒉𝑖 𝑥 ∈ {𝒉𝑖 𝑥1 , … , 𝒉𝑖 𝑥𝑛 }

𝑃 false positive = 𝑃 𝐸1 ∩ 𝐸2 ∩ ⋯ ∩ 𝐸𝑘 = ෑ

𝑖=1

𝑘

𝑃(𝐸𝑖)

𝒉1, … , 𝒉𝑘 independent

False positive probability – Events

47

Event 𝐸𝑖 holds iff 𝒉𝑖 𝑥 ∈ {𝒉𝑖 𝑥1 , … , 𝒉𝑖 𝑥𝑛 }

𝑃 𝐸𝑖
𝑐 = ෍

𝑧=1

𝑚

𝑃 𝒉𝑖 𝑥 = 𝑧 ⋅ 𝑃 𝐸𝑖
𝑐 𝒉𝑖 𝑥 = 𝑧)

Event 𝐸𝑖
𝑐 holds iff 𝒉𝑖 𝑥 ≠ 𝒉𝑖 𝑥1 and … and 𝒉𝑖 𝑥 ≠ 𝒉𝑖 𝑥𝑛

LTP

False positive probability – Events

48

𝑃 𝐸𝑖
𝑐 𝒉𝑖 𝑥 = 𝑧 =

Event 𝐸𝑖
𝑐 holds iff 𝒉𝑖 𝑥 ≠ 𝒉𝑖 𝑥1 and …

and 𝒉𝑖 𝑥 ≠ 𝒉𝑖 𝑥𝑛

𝑃 𝒉𝑖 𝑥1 ≠ 𝑧, … , 𝒉𝑖 𝑥𝑛 ≠ 𝑧 | 𝒉𝑖 𝑥 = 𝑧

= ෑ

𝑗=1

𝑛

𝑃 𝒉𝑖 𝑥𝑗 ≠ 𝑧

= ෑ

𝑗=1

𝑛

1 −
1

𝑚
= 1 −

1

𝑚

𝑛

𝑃 𝐸𝑖
𝑐 = ෍

𝑧=1

𝑚

𝑃 𝒉𝑖 𝑥 = 𝑧 ⋅ 𝑃 𝐸𝑖
𝑐 𝒉𝑖 𝑥 = 𝑧) = 1 −

1

𝑚

𝑛

= 𝑃 𝒉𝑖 𝑥1 ≠ 𝑧, … , 𝒉𝑖 𝑥𝑛 ≠ 𝑧 Independence of values
of 𝒉𝑖 on different inputs

Outputs of 𝒉𝑖 uniformly spread

False positive probability – Events

49

Event 𝐸𝑖 holds iff 𝒉𝑖 𝑥 ∈ {𝒉𝑖 𝑥1 , … , 𝒉𝑖 𝑥𝑛 }

Event 𝐸𝑖
𝑐 holds iff 𝒉𝑖 𝑥 ≠ 𝒉𝑖 𝑥1 and … and 𝒉𝑖 𝑥 ≠ 𝒉𝑖 𝑥𝑛

𝑃 𝐸𝑖
𝑐 = 1 −

1

𝑚

𝑛

FPR = ෑ

𝑖=1

𝑘

1 − 𝑃 𝐸𝑖
𝑐 = 1 − 1 −

1

𝑚

𝑛 𝑘

False Positivity Rate – Example

50

FPR = 1 − 1 −
1

𝑚

𝑛 𝑘

e.g., 𝑛 = 5,000,000

𝑘 = 30

𝑚 = 2,500,000

FPR = 1.28%

Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.

● Bloom filter with 𝑘 = 30 and 𝑚 = 2,500,000

(optimistic)
5,000,000 × 40𝐵 = 200MB

2,500,000 × 30 = 75,000,000 bits

< 10 MB

Time

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.

● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.

● Suppose the false positive rate is 3%

100000 × 0.03 × 500ms
1ms +

+2000 × 500 ms

102000
≈ 25.51ms

Bloom filter lookup

malicious URLs

0.5 seconds DB lookup
false positives

total URLs

Bloom Filters typical of….

… randomized algorithms and randomized data structures.

• Simple

• Fast

• Efficient

• Elegant

• Useful!

53

	Slide 1: CSE 312 Foundations of Computing II Lecture 10: Bloom Filters
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Basic Problem
	Slide 5: Naïve Solution I – Constant Time
	Slide 6: Naïve Solution II – Small Storage
	Slide 7: Less naïve solution – Hash Table
	Slide 8: Less naïve solution – Hash Table
	Slide 9: Hashing: collisions
	Slide 10: Good hash functions to keep collisions low
	Slide 11: Hashing: summary
	Slide 12: Bloom Filters to the rescue (Named after Burton Howard Bloom)
	Slide 13: Bloom Filters – Main points
	Slide 14: Bloom Filters
	Slide 15: Bloom Filters – Why Accept False Positives?
	Slide 16: Bloom Filters: Application
	Slide 17: Bloom Filters – More Applications
	Slide 18: What you can’t do with Bloom filters
	Slide 19: Bloom Filters – Ingredients
	Slide 20: Bloom Filters – Three operations
	Slide 21: Bloom Filters - Initialization
	Slide 22: Bloom Filters: Example
	Slide 23: Bloom Filters: Add
	Slide 24: Bloom Filters: Example
	Slide 25: Bloom Filters: Example
	Slide 26: Bloom Filters: Example
	Slide 27: Bloom Filters: Example
	Slide 28: Bloom Filters: Contains
	Slide 29: Bloom Filters: Example
	Slide 30: Bloom Filters: Example
	Slide 31: Bloom Filters: Example
	Slide 32: Bloom Filters: Example
	Slide 33: Bloom Filters: Example
	Slide 34: Bloom Filters: False Positives
	Slide 35: Bloom Filters: False Positives
	Slide 36: Bloom Filters: False Positives
	Slide 37: Bloom Filters: False Positives
	Slide 38: Bloom Filters: False Positives
	Slide 39: Bloom Filters: False Positives
	Slide 40: Bloom Filters: False Positives
	Slide 41: Bloom Filters: False Positives
	Slide 42: Bloom Filters: False Positives
	Slide 43: Bloom Filters: False Positives
	Slide 44: Brain Break
	Slide 45: Analysis: False positive probability
	Slide 46: False positive probability – Events
	Slide 47: False positive probability – Events
	Slide 48: False positive probability – Events
	Slide 49: False positive probability – Events
	Slide 50: False Positivity Rate – Example
	Slide 51: Comparison with Hash Tables - Space
	Slide 52: Time
	Slide 53: Bloom Filters typical of….

