CSE 312 Foundations of Computing II

1

Lecture 10: Bloom Filters

Announcements

- PSet 3 due today
- PSet 2 returned yesterday
- PSet 4 posted this evening
 - <u>Last</u> PSet prior to midterm (midterm is in exactly two weeks from now)
 - Midterm info will follow soon
 - PSet 5 will only come <u>after</u> the midterm in two weeks

• An Application: Bloom Filters!

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

Example. U = set of 128 bit strings $|U| \approx 2^{128}$ S = subset of strings of interest $|S| \approx 1000$

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Naïve Solution I – Constant Time

Idea: Represent *S* as an array A with |U| entries.

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

Membership test: To check. $x \in S$ just check whether A[x] = 1.

$$\rightarrow$$
 constant time!

Storage: Require storing |U| bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with *S* entries.

$$S = \{0, 2, \dots, K\}$$

Storage: Grows with |S| only

Membership test: Check $x \in S$ requires time linear in |S|

(Can be made logarithmic by using a tree)

Less naïve solution – Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether A[h(x)] = x

Storage: *m* elements (size of array)

Less naïve solution – Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$ **Storage:** *m* elements (size of array) Challenge 1: Ensure $h(x) \neq h(y)$ for most $x, y \in S$ Challenge 2: Ensure m = O(|S|)

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function *h* is good iff it
 - distributes elements uniformly across the *m* array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
 i.e., m = Ω(|S|)

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Bloom Filters to the rescue

(Named after Burton Howard Bloom)

Bloom Filters – Main points

- <u>Probabilistic</u> data structure.
- Close cousins of hash tables.
 - But: <u>Ridiculously</u> space efficient
- <u>Occasional</u> errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$. •
- Supports two operations: •
 - 1. add(x) adds $x \in U$ to the set S
 - 2. contains(x) ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False → definitely not in S
 True → possibly in S
 [i.e. we could have false positives]

Bloom Filters – Why Accept False Positives?

- **Speed** both **add** and **contains** very very fast.
- Space requires a miniscule amount of space relative to storing all the actual items that have been added.
 – Often just 8 bits per inserted item!
- Fallback mechanism can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters – More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

What you can't do with Bloom filters

- There is no delete operation
 - Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of *S*

But what you **can** do makes them very effective!

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array - "the Bloom filter"

- $k \text{ rows } t_1, \dots, t_k$, each of size m
- Think of each row as an *m*-bit vector

k different hash functions $h_1, ..., h_k: U \rightarrow [m]$

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE
$$(k, m)$$

for $i = 1, ..., k$: do
 t_i = new bit vector of m 0s

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Bloom Filters - Initialization

Bloom filter of length m = 5 that uses k = 3 hash functions

function INITIALIZE(k, m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0s

Index →	1	2	3	4	5
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom Filters: Add

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: **do**
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 3$

Index \rightarrow t_1 t_2 t_3

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: **do**
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 3$ h_2 ("thisisavirus.com") $\rightarrow 2$

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: **do**
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 3$ h_2 ("thisisavirus.com") $\rightarrow 2$ h_3 ("thisisavirus.com") $\rightarrow 5$

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com") h_1 ("thisisavirus.com") $\rightarrow 3$ h_2 ("thisisavirus.com") $\rightarrow 2$ h_3 ("thisisavirus.com") $\rightarrow 5$

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, Returns False otherwise

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

contains("thisisavirus.com")

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 3

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 3$

 h_2 ("thisisavirus.com") $\rightarrow 2$

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t [h(x)] = -1 \wedge t$	$[h(x)] = -1 \wedge \dots$	$\Lambda t_1 [h_1(\gamma)] = -$	- 1	cont	ains("this	isavirus.c	com")	
True	True True True			$h_1(")$ $h_2(")$ $h_3(")$	thisisaviru thisisaviru thisisaviru	us.com") us.com") us.com")	$\rightarrow 3$ $\rightarrow 2$ $\rightarrow 5$	
		Index →		1	2	3	4	5
		t ₁		0	0	1	0	0
		t ₂		0	1	0	0	0
		t ₃		0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] = -1 \land t_2[h_2(x)] = -1 \land \cdots$	$\wedge t$, $[h, (\gamma)] = -$	- 1	cont	ains("this	isavirus.c	com")	
$\frac{1}{1} \frac{1}{1} \frac{1}$	True h_1 ("this is a h_2 ("this is a h_2 ("this is a h_2 ("this is a h_2) ("this h_2) ("this is a h_2) ("this h_2)			thisisaviru thisisaviru thisisaviru	us.com") us.com") us.com")	$\rightarrow 3$ $\rightarrow 2$ $\rightarrow 5$	
	Index		1	2	3	4	5
Since all conditions satisfied,	returns T	rue (corre	ectly)	1	0	0
	t ₂	(0	1	0	0	0
	t ₃		0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(
$$x$$
)
for $i = 1, ..., k$: **do**
 $t_i[h_i(x)] = 1$

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: **do**
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 2$

Index →	1	2	3	4	5
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: **do**
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 2$ h_2 ("totallynotsuspicious.com") $\rightarrow 1$

Index →	1	2	3	4	5
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 2$ h_2 ("totallynotsuspicious.com") $\rightarrow 1$ h_3 ("totallynotsuspicious.com") $\rightarrow 5$

Index →	1	2	3	4	5
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 2$ h_2 ("totallynotsuspicious.com") $\rightarrow 1$ h_3 ("totallynotsuspicious.com") $\rightarrow 5$

Index →	1	2	3	4	5
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

contains("verynormalsite.com")

Index →	1	2	3	4	5
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") \rightarrow 3

Index →	1	2	3	4	5
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 3$ h_2 ("verynormalsite.com") $\rightarrow 1$

Index →	1	2	3	4	5
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_{4}[h_{4}(x)] == 1$	$\wedge t_{2}[h_{2}(x)] == 1 \wedge \cdots$	$\wedge t_{L}[h_{L}(x)] = $	= 1	cont	tains("ver	ynormalsi	ite.com")	
True	True True			h ₁ (" h ₂ (" h ₃ ("	verynorm verynorm verynorm	alsite.com alsite.com alsite.com	n") → 3 n") → 1 n") → 5	
		Index →		1	2	3	4	5
		t ₁		0	1	1	0	0
		t ₂		1	1	0	0	0
		t ₃		0	0	0	0	1

Bloom filter of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land$	$\cdots \wedge t_{k}[h_{k}(x)] =$	= 1 CO	ntains("ver	ynormals	ite.com")	
True True	Tr	True h_1 ("verynorm h_2 ("verynorm h_3 ("verynorm			n") → 3 n") → 1 n") → 5	
	Index	1	2	3	4	5
Since all conditions satisfied, returns True (incorrectly)			correctly)	1	0	0
	t ₂	1	1	0	0	0
	t ₃	0	0	0	0	1

Brain Break

1750011

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Probability over what?! Over the choice of the h_1, \dots, h_k

Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $h_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability – Events

Assume we perform $add(x_1), \dots, add(x_n)$ + contains(x) for $x \notin \{x_1, \dots, x_n\}$

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \dots, h_i(x_n)\}$

False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \dots, h_i(x_n)\}$ Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and \dots and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z)$$

$$\mathsf{LTP}$$

False positive probability – Events False positive probability – Events and $h_i(x) \neq h_i(x_n) \neq h_i(x_n)$

$$P(E_i^c | \mathbf{h}_i(x) = z) = P(\mathbf{h}_i(x_1) \neq z, ..., \mathbf{h}_i(x_n) \neq z | \mathbf{h}_i(x) = z)$$

Independence of values
of
$$h_i$$
 on different inputs
$$= \prod_{j=1}^{n} P(h_i(x_j) \neq z)$$
Outputs of h_i uniformly spread
$$= \prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n$$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c \mid h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$$

False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \dots, h_i(x_n)\}$ Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and \dots and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

FPR =
$$\prod_{i=1}^{k} (1 - P(E_i^c)) = (1 - (1 - \frac{1}{m})^n)^k$$

False Positivity Rate – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$
FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3% • false positives $1ms + \frac{100000 \times 0.03 \times 500ms + 2000 \times 500ms}{102000}$ • total URLs • Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!