CSE 312 Foundations of Computing II

Lecture 8: Linearity of Expectation

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Today:

- More Expectation Examples
- Linearity of Expectation
- Indicator Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

 $\Sigma_{x \in X(\Omega)} P(X = x) = 1$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$
$$\boxed{\sum_{x \in \Omega_X} p_X(x) = 1}$$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

 $F_X(x) = P(X \le x)$

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected value** or **mean** of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expectation

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$

X = number of heads

What is $\mathbb{E}[X]$?

 $\mathbb{E}[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) + 2 \cdot p_X(2)$ $= 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = \frac{1}{2} + \frac{1}{2} = 1$

6

0

Another Interpretation

"If X is how much you win playing the game in one round. How much would you expect to win, <u>on average</u>, per game, when repeatedly playing?"

Answer: $\mathbb{E}[X]$

RVs for gains from some bets:

Note o and oo are not EVEN

RV RED: If Red number turns up +1, if Black number, 0, or 00 turns up -1

$$\mathbb{E}[\mathsf{RED}] = (+1) \cdot \frac{18}{38} + (-1) \cdot \frac{20}{38} = -\frac{2}{38} \approx -5.26\%$$

RV 1st12: If number 1-12 turns up +2, if number 13-36, 0, or 00 turns up -1

$$\mathbb{E}[1^{\text{st}}] = (+2) \cdot \frac{12}{38} + (-1) \cdot \frac{26}{38} = -\frac{2}{38} \approx -5.26\%$$

Note o and oo are not EVEN

RV BASKET: If 0, 00, 1, 2, or 3 turns up +6 otherwise -1 $\mathbb{E}[\text{BASKET}] = (+6) \cdot \frac{5}{38} + (-1) \cdot \frac{33}{38} = -\frac{3}{38} \approx -7.89\%$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$
$$= 6 \cdot \frac{1}{6} = 1$$

Example – Flipping a biased coin until you see heads

Biased coin: ulletP(H) = q > 0-qP(T) = 1 - q1 - q• Z = # of coin flips until first head 1 - q $P(Z = i) = q (1 - q)^{i-1}$ $\mathbb{E}[Z] = \sum i \cdot P(Z = i) = \sum i \cdot q(1 - q)^{i - 1}$ Converges, so $\mathbb{E}[Z]$ is finite

Can calculate this directly but...

Example – Flipping a biased coin until you see heads

Another view: If you get heads first try you get Z = 1; If you get tails you have used one try and have the same experiment left

 $\mathbb{E}[Z] = q \cdot 1 + (1-q)(1 + \mathbb{E}(Z))$

Solving gives $q \cdot \mathbb{E}[Z] = q + (1 - q) = 1$ [mplies $\mathbb{E}[Z] = 1/q$

Expected Value of *X***= # of heads**

Each coin shows up heads half the time.

Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent) $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

Or, more generally: For any random variables X_1, \ldots, X_n ,

$$\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$$

Because: $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[(X_1 + \dots + X_{n-1}) + X_n]$ = $\mathbb{E}[X_1 + \dots + X_{n-1}] + \mathbb{E}[X_n] = \dots$

Linearity of Expectation – Proof

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent) $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

 $\mathbb{E}[X + Y] = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$ $= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$ $= \mathbb{E}[X] + \mathbb{E}[Y]$

Example – Coin Tosses

We flip *n* coins, each one heads with probability *p* Z is the number of heads, what is $\mathbb{E}(Z)$?

Example – Coin Tosses – The brute force method

We flip n coins, each one heads with probability p,

Z is the number of heads, what is $\mathbb{E}[Z]$?

$$\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$$
$$= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$$

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

17

Computing complicated expectations

Often boils down to the following three steps:

• <u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \dots + X_n$$

• LOE: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

• <u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variables

For any event *A*, can define the indicator random variable X_A for *A* $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases} \begin{cases} P(X_A = 1) = P(A) \\ P(X_A = 0) = 1 - P(A) \end{cases}$

Example – Coin Tosses

We flip n coins, each one heads with probability pZ is the number of heads, what is $\mathbb{E}[Z]$?

- $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$\mathbb{E}[X_i] = p \cdot 1 + (1-p) \cdot 0 = p$$

Example: Returning Homeworks

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose</u>: What is *X_i*?

 $X_i = 1$ iff i^{th} student gets own HW back

LOE: $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$

<u>Conquer</u>: What is $\mathbb{E}[X_i]$?

Pairs with the same birthday

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve **pairs** of students (i, j) for $i \neq j$ $X_{ij} = 1$ iff students *i* and *j* have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Example: m = 40, we expect 2.13 pairs.

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \cdots + a_nX_n] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n].$

Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general
$$\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$$

E.g., $X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

But $\mathbb{E}[X^2] \ge \mathbb{E}[X]^2$ always.

