CSE 312 Foundations of Computing II

Lecture 7: Random Variables

Announcements

- PSet 1 graded + solutions on canvas
- PSet 2 due tonight
- Pset 3 posted this evening

Ω

$p(A)$ Density of *A* in Ω.

 $p(A|B)$ density of $A \cap B$ in B .

$p(A)$ Density of A in Ω .

 $p(A|B)$ density of $A \cap B$ in B .

 $p(A \cap B)$ $= p(B) \cdot p(A|B)$

$p(A)$ Density of A in Ω .

 $p(A|B)$ density of $A \cap B$ in B .

 $p(A \cap B) = 0$ "mutually exclusive"

$p(A|B)$ density of $A \cap B$ in B .

 $p(A \cap B) = p(B) \cdot p(A|B) =$ $p(B)\cdot p(A).$ "mutually independent"

Knowing B happened does not change the probability that A happened.

Ω

 $\overline{\mathcal{A}}$ $\bm{\mathsf{B}}$ HH TT

 TH and TT

 $A:$ first toss is H $B: second$ toss is H

 $p(A|B)$ density of $A \cap B$ in B .

 $p(A \cap B) = p(B) \cdot p(A|B) =$ $p(B)\cdot p(A).$ "mutually independent"

Knowing B happened does not change the probability that A happened.

Review Chain rule & independence

Theorem. (Chain Rule) For events $A_1, A_2, ..., A_n$, $P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2)$ $\cdots P(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1})$

Definition. Two events A and A are **independent** if

 $P(A \cap B) = P(A) \cdot P(B).$

"Equivalently." $P(A|B) = P(A)$.

One more related item: Conditional Independence

Definition. Two events A and B are **independent** conditioned on C if $P(C) \neq 0$ and $P(A \cap B | C) = P(A | C) \cdot P(B | C)$.

- If $P(A \cap C) \neq 0$, equivalent to $P(B|A \cap C) = P(B|C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A|B \cap C) = P(A|C)$

Plain Independence. Two events A and B are **independent** if $P(A \cap B) = P(A) \cdot P(B).$

- If $P(A) \neq 0$, equivalent to $P(B|A) = P(B)$
- If $P(B) \neq 0$, equivalent to $P(A|B) = P(A)$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to **capture quantitative properties** of the outcome of a random experiment, e.g.:

- *What is the total of two dice rolls?*
- *What is the number of coin tosses needed to see the first head?*
- *What is the number of heads among 2 coin tosses?*

Random Variables

Definition. A **random variable (RV)** for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is called its *range*/*support*

Two common notations: $X(\Omega)$ or Ω_X

Example. Two coin flips: $\Omega = \{HH, HT, TH, TT\}$

 $X =$ number of heads in two coin flips

 $X(HH) = 2$ $X(HT) = 1$ $X(TH) = 1$ $X(TT) = 0$

range (or support) of X is $X(\Omega) = \{0,1,2\}$

Ω $\overline{\mathcal{A}}$ $\bm B$ HH and HT TH and TT $X = 0$ $X = 1$ $X = 1$ $X = 2$

A: first toss is H $B: second$ toss is H X: number of heads $p(A|B)$ density of $A \cap B$ in B .

$$
p(A \cap B) = p(B) \cdot p(A|B) =
$$

$$
p(B) \cdot p(A).
$$
"mutually independent"

Knowing B happened does not change the probability that A happened.

Another RV Example

20 different balls labeled 1, 2, …, 20 in a jar

- Draw a subset of 3 from the jar uniformly at random
- L = maximum of the 3 numbers on the balls
	- Example: $X({2, 7, 5}) = 7$
	- Example: $X({15, 3, 8}) = 15$

Random Variables

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event ${X = x} = {\omega \in \Omega \mid X(\omega) = x}$ We write $P(X = x) = P({X = x})$ \blacksquare $X(\omega) = x_1$ $X(\omega) = x_2$ $X(\omega) = x_3$ $X(\omega) = x_4$ Random variables **partition** the sample space. $\Sigma_{x \in X(\Omega)} P(X = x) = 1$

Random Variables

Definition. For a RV $X: \Omega \to \mathbb{R}$, we define the event ${X = x} = {\omega \in \Omega \mid X(\omega) = x}$ We write $P(X = x) = P({X = x})$

Example. Two coin flips: $\Omega = \{TT, HT, TH, HH\}$

 $X =$ number of heads in two coin flips $P(X = 0) =$ 1 $\frac{1}{4}$ $P(X = 1) =$ 1 $\frac{1}{2}$ $P(X = 2) =$ 1 4 $\Omega_X = X(\Omega) = \{0,1,2\}$

The RV X yields a new probability distribution with sample space $\Omega_X \subset \mathbb{R}!$

Agenda

- Random Variables
- Probability Mass Function (PMF) <
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of

Random variables **partition** the sample space.

$$
\sum_{x \in X(\Omega)} P(X = x) = 1
$$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of

Random variables **partition** the sample space.

$$
\sum_{x \in \Omega_X} P(X = x) = 1
$$

$$
X(\omega) = x_1
$$

$$
X(\omega) = x_2
$$

$$
X(\omega) = x_3
$$

$$
X(\omega) = x_4
$$

$$
X(\omega) = x_2
$$

27

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the function $p_X: \Omega_X \to \mathbb{R}$ defined by $p_X(x) = P(X = x)$ is called the **probability mass function (PMF)** of

Random variables **partition** the sample space.

$$
\sum_{x \in \Omega_X} p_X(x) = 1
$$

Example – Two Fair Dice

Example – Number of Heads

We flip *n* coins, independently, each heads with probability p

```
\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}
```

```
X = \# of heads
   p_X(k) = P(X = k) =\overline{n}\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}
```
of sequences with k heads Prob of sequence w/ k heads

Example – Number of Heads

We flip n coins, independently, each heads with probability p

 $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$

 $X = #$ of heads

$$
p_X(k) = P(X = k) = {n \choose k} \cdot p^k \cdot (1 - p)^{n-k}
$$

$$
\sum_{k=0}^n P(X = k) = \sum_{k=0}^n {n \choose k} p^k (1 - p)^{n-k} =
$$

Example – Number of Heads

We flip *n* coins, independently, each heads with probability p

 $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$

 $X = \#$ of heads

$$
p_X(k) = P(X = k) = {n \choose k} \cdot p^k \cdot (1-p)^{n-k}
$$

$$
\sum_{k=0}^n P(X = k) = \sum_{k=0}^n {n \choose k} p^k (1-p)^{n-k} = (p+1-p)^k = 1.
$$

Binomial theorem

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function of X is the function $F_x: \mathbb{R} \to [0,1]$ that specifies for any real number x, the probability that $X \leq x$.

That is, F_x is defined by $F_x(x) = P(X \le x)$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation <

Expectation (Idea)

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$ $X =$ number of heads

³⁹ **-1 ⁰ ¹ ² ³ 1/4 1/2 3/4 1** p_X

• If we chose samples from Ω over and over repeatedly, how many heads would we expect to see per sample from Ω ?

– The idealized number, not the average of actual numbers seen (which will vary from the ideal)

Expected Value of a Random Variable

Definition. Given a discrete RV X: Ω → ℝ, the expectation or expected **value** or **mean** of X is

$$
\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Expected Value

Definition. The expected value of a (discrete) RV *X* is $\mathbb{E}[X] = \sum_{x} x \cdot p_{x}(x) = \sum_{x} x \cdot P(X = x)$

Example. Value *X* of rolling one fair die

$$
p_X(1) = p_X(2) = \dots = p_X(6) = \frac{1}{6}
$$

$$
\mathbb{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5
$$

For the equally-likely outcomes case, this is just the average of the possible outcomes!

Expectation

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$

 $X =$ number of heads

What is $E[X]$?

 $\mathbb{E}[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) + 2 \cdot p_X(2)$ $= 0 \cdot$ 1 $\frac{1}{4} + 1 \cdot$ 1 $\frac{1}{2} + 2 \cdot$ 1 4 = 1 $\frac{1}{2}$ + 1 2 $= 1$

0

Another Interpretation

"If is how much you win playing the game in one round. How much would you expect to win, on average, per game, when repeatedly playing?"

Answer: $E[X]$

RVs for gains from some bets:

Note 0 and 00 are not EVEN

RV RED: If Red number turns up $+1$, if Black number, 0, or 00 turns up -1

$$
\mathbb{E}[\text{RED}] = (+1) \cdot \frac{18}{38} + (-1) \cdot \frac{20}{38} = -\frac{2}{38} \approx -5.26\%
$$

RV 1st12: If number 1-12 turns up $+2$, if number 13-36, 0, or 00 turns up -1

$$
\mathbb{E}[1^{\text{st}}12] = (+2) \cdot \frac{12}{38} + (-1) \cdot \frac{26}{38} = -\frac{2}{38} \approx -5.26\%
$$

Note 0 and 00 are not EVEN

RV BASKET: If \circ , $\circ \circ$, 1, 2, or 3 turns up +6 otherwise -1 $\mathbb{E}[BASKET] = (+6) \cdot \frac{5}{36}$ $\frac{1}{38} + (-1) \cdot$ 33 38 $=-\frac{3}{36}$ 38 $\approx -7.89\%$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- \bullet Let X be the number of students who get their own HW

$$
\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}
$$

$$
= 6 \cdot \frac{1}{6} = 1
$$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Next time: Properties of Expectation