
CSE 312

Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem
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Review Probability

Examples:

• Single coin flip: Ω = {𝐻, 𝑇}

• Two coin flips: Ω = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇}

• Roll of a die:  Ω = 1, 2, 3, 4, 5, 6

Examples:

• Getting at least one head in two coin flips: 
𝐸 =  {𝐻𝐻, 𝐻𝑇, 𝑇𝐻}

• Rolling an even number on a die :
𝐸 =  {2, 4, 6}
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Definition. A sample space Ω is the set of 
all possible outcomes of an experiment. 

Definition. An event  𝐸 ⊆ Ω is a subset of 
possible outcomes. 



Review Probability space

Definition. A (discrete) probability space 
is a pair (Ω, 𝑃) where:

• Ω is a set called the sample space.

• 𝑃 is the probability measure, 

    a function 𝑃: Ω → ℝ such that:

–  𝑃 𝑥 ≥ 0 for all 𝑥 ∈ Ω

–  σ𝑥∈Ω 𝑃 𝑥 = 1
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Set of possible 
outcomess

Specify Likelihood 
(or probability) of each 
outcome

Either finite or infinite 
countable (e.g., integers)

The likelihood (or 
probability) of each 
outcome is non-negative.

Some outcome must show 
up

𝐴 ⊆ Ω:  𝑃 𝐴 = ෍

𝑥∈A

𝑃 𝑥



Agenda

• Conditional Probability

• Bayes Theorem

• Law of Total Probability

• More Examples
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Conditional Probability (Idea)

What’s the probability that a randomly chosen person (everyone equally likely) likes 
ice cream given they like donuts?
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A B

36 7 13

14

7

7 + 13
=

7

20



Conditional Probability

A useful formula is

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵)
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Definition. The conditional probability of event 𝐴 given an event 𝐵 
happened (assuming 𝑃 𝐵 ≠ 0) is

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)



Suppose that you flip a fair coin twice. 

What is the probability that both flips are heads given that you have at 
least one head? 

Let 𝑂 be the event that at least one flip is heads

Let 𝐵 be the event that both flips are heads

Conditional Probability Examples 
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𝐻𝐻 𝐻𝑇

𝑇𝐻 𝑇𝑇

Ω

𝑃 𝑂 = 𝑃 𝐵 = 𝑃 𝐵 ∩ 𝑂 =

𝑃 𝐵|𝑂 =
𝑃(𝐵 ∩ 𝑂)

𝑃(𝑂)
=

1/4

3/4
=

1

3

3/4 1/4 1/4



Suppose that you flip a fair coin twice. 

What is the probability that at least one flip is heads given that at least 
one flip is tails? 

Let 𝐻 be the event that at least one flip is heads

Let 𝑇 be the event that at least one flip is tails

Conditional Probability Examples 
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𝐻𝐻 𝐻𝑇

𝑇𝐻 𝑇𝑇

Ω

𝑃 𝐻 = 3/4 𝑃 𝑇 = 3/4 𝑃 𝐻 ∩ 𝑇 = 1/2

𝑃 𝐻|𝑇 =
𝑃(𝐻 ∩ 𝑇)

𝑃(𝑇)
=

1/2

3/4
=

2

3



Reversing Conditional Probability

Question: Does 𝑃 𝐴 𝐵 = 𝑃(𝐵|𝐴)?

No!  

• Let 𝐴 be the event you are wet

• Let 𝐵 be the event you are swimming

𝑃 𝐴 𝐵 = 1
𝑃 𝐵 𝐴 ≠ 1
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Example with Conditional Probability

Suppose we toss a red die and a blue die:     

both 6 sided and all outcomes equally 
likely.                                                            

What is 𝑃 𝐵 ? What is 𝑃(𝐵|𝐴)?
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pollev.com/stefanotessaro617

       𝑃(𝐵)         𝑃(𝐵|𝐴)
a)   1/6                1/6
b)   1/6     1/3
c)   1/6    3/36
d)   1/9                1/3 

𝑃: Uniform on 



Gambler’s fallacy
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Assume we toss 51 fair coins. 
Assume we have seen 50 coins, and they are all “tails”.
What are the odds the 51st coin is “heads”? 

𝐴 = first 50 coins are “tails”

𝐵 = first 50 coins are “tails”, 51st coin is ”heads”

𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵

𝑃(𝐴)
=

1/251

2/251
=

1

2

51st coin is independent of 
outcomes of first 50 tosses!

Gambler’s fallacy = Feels like it’s time for “heads”!?



Agenda

• Conditional Probability

• Bayes Theorem

• Law of Total Probability

• More Examples
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Bayes Theorem

A formula to let us “reverse” the conditional.

𝑃 𝐴  is called the prior (our belief without knowing anything)

𝑃 𝐴 𝐵  is called the posterior (our belief after learning 𝐵)
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Theorem. (Bayes Rule) For events 𝐴 and 𝐵, where 𝑃 𝐴 , 𝑃 𝐵 > 0,

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)



Bayes Theorem Proof
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𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
𝑃 𝐴 , 𝑃 𝐵 > 0 

Claim:

⇒



Bayes Theorem Proof

By definition of conditional probability

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵)

Swapping 𝐴, 𝐵 gives

𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐵 𝐴 𝑃 𝐴

But 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐵 ∩ 𝐴), so

𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

Dividing both sides by 𝑃(𝐵) gives

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
𝑃 𝐴 , 𝑃 𝐵 > 0 

Claim:

⇒



Brain Break
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Agenda

• Conditional Probability

• Bayes Theorem

• Law of Total Probability

• More Examples
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Partitions (Idea)

These events partition the sample space

1. They “cover” the whole space

2. They don’t overlap, i.e., they are mutually exclusive
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Partition
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Definition. Non-empty events 𝐸1, 𝐸2, … , 𝐸𝑛 partition sample space Ω if

(Exhaustive) 

𝐸1 ∪ 𝐸2 ∪ ⋯ ∪ 𝐸𝑛 = ራ
𝑖=1

𝑛

𝐸𝑖 = Ω

(Pairwise Mutually Exclusive)

∀𝑖∀𝑖≠𝑗  𝐸𝑖 ∩ 𝐸𝑗 = ∅

𝐸𝑐 𝐸
𝐸1 𝐸2 𝐸3 𝐸4



Law of Total Probability (Idea)

If we know 𝐸1, 𝐸2, … , 𝐸𝑛 partition Ω, what can we say about 𝑃(𝐴)?
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𝐴

𝐸1 𝐸2 𝐸3 𝐸4



Law of Total Probability (LTP)

Using the definition of conditional probability 𝑃 𝐴 ∩ 𝐸 = 𝑃 𝐴 𝐸 𝑃(𝐸) we can get 
the alternate form of this that shows

𝑃 𝐴 = ෍

𝑖=1

𝑛

𝑃 𝐴 𝐸𝑖 𝑃(𝐸𝑖)
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Theorem. If events 𝐸1, 𝐸2, … , 𝐸𝑛 partition the sample space Ω, then for any event 
𝐴 ⊆ Ω 

𝑃 𝐴 = 𝑃 𝐴 ∩ 𝐸1 + … + 𝑃 𝐴 ∩ 𝐸𝑛 = ෍

𝑖=1

𝑛

𝑃(𝐴 ∩ 𝐸𝑖)

Why do we care? Often easier to compute 𝑃 𝐴  this way!



LTP Example

Alice has two pockets: 

• Left pocket: Two blue balls, two green balls

• Right pocket: One blue ball, two green balls.

Alice picks a random ball from a random pocket. 

[Both pockets equally likely, each ball equally likely.]
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LTP Example
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𝑃 B = 𝑃 B ∩ Left + 𝑃 B ∩ Right

= 𝑃 Left × 𝑃 B|Left + 𝑃 Right × 𝑃 B|Right

=
1

2
×

1

2
+

1

2
×

1

3
=

1

4
+

1

6
=

5

12

(Law of total probability)

R B

L G

1/2

1/2

1/2

1/3

2/3

Right

Left
1/2

R G

L B
1/3 = 𝑃 B Right) and 2/3 = 𝑃 G Right)

Left pocket: 2 blue, 2 green

Right pocket: 1 blue, 2 green



Agenda

• Conditional Probability

• Bayes Theorem

• Law of Total Probability

• More Examples
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Example – Zika Testing
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Usually no or mild symptoms (rash); sometimes 
severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns 
“positive”, what is the likelihood that you 
actually have the disease?



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you have Zika (event 𝑍) if you test positive (event 𝑇)?
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𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍𝑐)

𝑃(𝑍)

Bayes Theorem 𝑃 𝑍 𝑇 =
𝑃 𝑍 ⋅ 𝑃(𝑇|𝑍)

𝑃(𝑇)

LTP 𝑃 𝑇 = 𝑃 𝑍 ⋅ 𝑃 𝑇 𝑍 + 𝑃 𝑍𝑐 𝑃(𝑇|𝑍𝑐)= 0.005 ⋅ 0.98 + 0.995 ⋅ 0.01 = 0.01485

=
0.005 ⋅ 0.98

0.01485
≈ 0.33



Example – Zika Testing

Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you have Zika (event 𝑍) if you test positive (event 𝑇)?
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Suppose we had 100,000 people:
• 490 have Zika and test positive
• 10 have Zika and test negative
• 995 do not have Zika and test positive
• 98,505 do not have Zika and test negative

490

490 + 995
≈ 0.33

Demo

𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍𝑐)

𝑃(𝑍)

98% of those 
with Zika

2% of those 
with Zika

1% of those 
without Zika

500 have Zika (0.5%)
99,500 do not

https://web.stanford.edu/class/cs109/demos/medicalBayes.html


Philosophy – Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed drastically

𝑍 = you have Zika

𝑇 = you test positive for Zika
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Prior: 𝑃(𝑍)

I have a 0.5% chance 
of having Zika

Posterior: 𝑃(𝑍|𝑇)

I now have a 33% 
chance of having Zika 

after the test!!!

Receive positive 
test result



Example – Zika Testing

Suppose we know the following Zika stats

– A test is 98% effective at detecting Zika (“true positive”)

– However, the test may yield a “false positive” 1% of the time

– 0.5% of the US population has Zika.

What is the probability you test negative (event 𝑇𝑐) if you have Zika (event 𝑍)?
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𝑃(𝑇|𝑍)
𝑃(𝑇|𝑍𝑐)

𝑃(𝑍)

𝑃 𝑇𝑐 𝑍 =  1 − 𝑃 𝑇 𝑍 = 0.02



Conditional Probability Defines a Probability Space
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The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.  

Example. 𝑃 𝐵𝑐 𝐴 = 1 − 𝑃(𝐵|𝐴)

Formally. (Ω, 𝑃) is a probability space and 𝑃 𝐴 > 0  

(𝐴, 𝑃(⋅ |𝐴)) is a probability space
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