CSE 312 Foundations of Computing II

Lecture 5: Conditional Probability and Bayes Theorem

Review Probability

Definition. A **sample space** Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$

• Rolling an even number on a die : $E = \{2, 4, 6\}$

Review Probability space

Either finite or infinite countable (e.g., integers)

Definition. A (discrete) **probability space** is a pair (Ω, P) where:

- Ω is a set called the **sample space**.
- *P* is the **probability measure,**

a function $P: \Omega \to \mathbb{R}$ such that:

- $-P(x) \geq 0$ for all $x \in \Omega$
- $-\sum_{x\in\Omega} P(x) = 1$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Set of possible **outcomess**

Specify Likelihood (or probability) of each **outcome**

Agenda

- Conditional Probability <
- Bayes Theorem
- Law of Total Probability
- More Examples

Conditional Probability (Idea)

What's the probability that a randomly chosen person (everyone equally likely) likes ice cream **given** they like donuts?

$$
\frac{7}{7+13} = \frac{7}{20}
$$

Conditional Probability

Definition. The **conditional probability** of event *A* **given** an event *B* happened (assuming $P(B) \neq 0$) is $P(A|B) =$ $P(A \cap B)$ $P(B)$

A useful formula is

 $P(A \cap B) = P(A|B)P(B)$

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that both flips are heads given that you have at *least one head?*

Let 0 be the event that at least one flip is heads Let *B* be the event that *both* flips are heads

 $P(O) = 3/4$ $P(B) = 1/4$ $P(B \cap O) = 1/4$ $P(B|O) =$ $P(B \cap O)$ $P(O)$ = 1/4 3/4 = 1 3

Ω

Conditional Probability Examples

Suppose that you flip a fair coin twice.

What is the probability that at least one flip is heads given that at least *one flip is tails?*

Let *H* be the event that at least one flip is *heads* Let T be the event that at least one flip is *tails*

 $P(H) = 3/4$ $P(T) = 3/4$ $P(H \cap T) = 1/2$

$$
P(H|T) = \frac{P(H \cap T)}{P(T)} = \frac{1/2}{3/4} = \frac{2}{3}
$$

Ω

Reversing Conditional Probability

Question: Does $P(A|B) = P(B|A)$?

No!

- Let A be the event you are wet
- Let B be the event you are swimming

 $P(A|B) = 1$ $P(B|A) \neq 1$

Example with Conditional Probability

Suppose we toss a red die and a blue die: both 6 sided and all outcomes equally likely. What is $P(B)$? What is $P(B|A)$?

pollev.com/stefanotessaro617

Gambler's fallacy

 $P(B|A) =$

Assume we toss **51** fair coins. Assume we have seen **50** coins, and they are all "tails". What are the odds the 51st coin is "heads"?

- $A =$ first 50 coins are "tails"
- $B =$ first 50 coins are "tails", 51st coin is "heads"

 $P(A \cap B)$ $P(A)$ = 1/2 51 2/2 51 = 1 2 51st coin is independent of outcomes of first 50 tosses!

Gambler's fallacy = Feels like it's time for "heads"!?

Agenda

- Conditional Probability
- Bayes Theorem <
- Law of Total Probability
- More Examples

A formula to let us "reverse" the conditional.

Theorem. (Bayes Rule) For events A and B, where $P(A)$, $P(B) > 0$, $P(A|B) =$ $P(B|A)P(A)$ $P(B)$

P(A) is called the **prior** (our belief without knowing anything) $P(A|B)$ is called the **posterior** (our belief after learning B)

Bayes Theorem Proof

 $P(A|B) =$ $P(B|A)P(A)$ $P(B)$ $P(A), P(B) > 0 \implies$ Claim:

Bayes Theorem Proof

 $P(A|B) =$ $P(B|A)P(A)$ $P(B)$ $P(A), P(B) > 0 \implies$ Claim:

By definition of conditional probability

 $P(A \cap B) = P(A|B)P(B)$

Swapping A , B gives

 $P(B \cap A) = P(B|A)P(A)$

But $P(A \cap B) = P(B \cap A)$, so

 $P(A|B)P(B) = P(B|A)P(A)$

Dividing both sides by $P(B)$ gives

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

Brain Break

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

Partitions (Idea)

These events **partition** the sample space

- 1. They "cover" the whole space
- 2. They don't overlap, i.e., they are mutually exclusive

Partition

Definition. Non-empty events $E_1, E_2, ..., E_n$ partition sample space Ω if **(Exhaustive)**

$$
E_1 \cup E_2 \cup \cdots \cup E_n = \bigcup_{i=1}^n E_i = \Omega
$$

(Pairwise Mutually Exclusive)

 $\forall_i \forall_{i \neq j}$ $E_i \cap E_j = \emptyset$

Law of Total Probability (Idea)

If we know $E_1, E_2, ..., E_n$ partition Ω , what can we say about $P(A)$?

Law of Total Probability (LTP)

Theorem. If events $E_1, E_2, ..., E_n$ partition the sample space Ω , then for any event $A \subseteq \Omega$

$$
P(A) = P(A \cap E_1) + \dots + P(A \cap E_n) = \sum_{i=1}^{n} P(A \cap E_i)
$$

Using the definition of conditional probability $P(A \cap E) = P(A|E)P(E)$ we can get the alternate form of this that shows

$$
P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)
$$

Why do we care? Often easier to compute $P(A)$ this way!

LTP Example

Alice has two pockets:

- **Left pocket:** Two blue balls, two green balls
- **Right pocket:** One blue ball, two green balls.

Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

LTP Example

Left pocket: 2 blue, **2 green Right pocket: 1 blue**, **2 green**

 $P(B) = P(B \cap \text{Left}) + P(B \cap \text{Right})$ $P(E) \times P(E|Left) + P(Right) \times P(B|Right)$ = 1 2 × 1 2 + 1 2 × 1 3 = 1 4 + 1 6 = 5 12 **(Law of total probability)**

Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- More Examples

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $P(T|Z)$
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- $-$ 0.5% of the US population has Zika. $P(Z)$

What is the probability you have Zika (event Z) if you test positive (event T)?

Bayes Theorem
$$
P(Z|T) = \frac{P(Z) \cdot P(T|Z)}{P(T)} = \frac{0.005 \cdot 0.98}{0.01485} \approx 0.33
$$

LTP $P(T) = P(Z) \cdot P(T|Z) + P(Z^c)P(T|Z^c) = 0.005 \cdot 0.98 + 0.995 \cdot 0.01 = 0.01485$

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $P(T|Z)$
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- $-$ 0.5% of the US population has Zika. $P(Z)$

500 have Zika (0.5%) 99,500 do not

What is the probability you have Zika (event Z) if you test positive (event T)?

Suppose we had 100,000 people:

- 490 **have Zika** and **test positive**
	- 2% of those with Zika

98% of those

with Zika

- 10 **have Zika** and **test negative**
- 995 **do not have Zika** and **test positive**
- 98,505 **do not have Zika** and **test negative**

1% of those without Zika

Philosophy – Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed **drastically**

 $Z =$ you have Zika $T =$ you test positive for Zika

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $P(T|Z)$
- $-$ However, the test may yield a "false positive" 1% of the time $P(T|Z^c)$
- $-$ 0.5% of the US population has Zika. $P(Z)$

What is the probability you test negative (event T^c) if you have Zika (event Z)?

 $P(T^{c}|Z) = 1 - P(T|Z) = 0.02$

Conditional Probability Defines a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $P(B^c|A) = 1 - P(B|A)$

Formally. (Ω, P) is a probability space and $P(A) > 0$

