CSE 312 Foundations of Computing II

Lecture 3: Even more counting

Binomial Theorem, Inclusion-Exclusion, Pigeonhole Principle

Recap

Two core rules for counting a set S :

- Sum rule:
	- $-$ Break up S into disjoint pieces/cases
	- $-|S|$ = the sum of the sizes of the pieces.
- Product rule:
	- $-$ View the elements of S as being constructed by a series of choices, where the # of possibilities for each choice doesn't depend on the previous choices
	- $-|S|$ = the product of the # of choices in each step of the series.

Recap

- k -sequences: How many length k sequences over alphabet of size n ? – Product rule \rightarrow n^k
- k -permutations: How many length k sequences over alphabet of size n , without repetition?

$$
- \text{ Permutation} \rightarrow \frac{n!}{(n-k)!}
$$

• k -combinations: How many size k subsets of a set of size n (without repetition and without order)?

$$
-\text{ combination} \rightarrow {n \choose k} = \frac{n!}{k!(n-k)!}
$$

Binomial Coefficients – Many interesting and useful properties

Binomial Theorem: Idea

$$
(x + y)2 = (x + y)(x + y)
$$

= $xx + xy + yx + yy$
= $x2 + 2xy + y2$

$$
(x + y)4 = (x + y)(x + y) (x + y) (x + y)
$$

= $xxxx + yyyy + xyxy + yxyy + ...$

Binomial Theorem: Idea

$$
(x + y)n = (x + y) \dots (x + y)
$$

Each term is of the form $x^k y^{n-k}$, since each term is made by multiplying exactly *n* variables, either x or y, one from each copy of $(x + y)$

How many times do we get $x^k y^{n-k}$?

The number of ways to choose x from exactly k of the n copies of $(x + y)$ (the other $n - k$ choices will be y) which is:

$$
\binom{n}{k} = \binom{n}{n-k}
$$

Binomial Theorem

$$
(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}
$$

Apply with $x = y = 1$

Apply with $x = 1$, $y = -1$

Corollary. \sum $k=0$ \overline{n} \overline{n} \boldsymbol{k} $= 2^n$ **Corollary.** $\binom{n}{0} - \binom{n}{1} +$ \boldsymbol{n} $\binom{n}{2} - \cdots = 0$

Pascal's Identity

$$
\mathsf{Fact.} \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
$$

How to prove Pascal's identity?

Algebraic argument:

$$
{n-1 \choose k-1} + {n-1 \choose k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}
$$

= 20 years later ...
= $\frac{n!}{k!(n-k)!}$
= ${n \choose k}$ Hard work and not intuitive

Let's see a combinatorial argument

Combinatorial proof idea:

- Find *disjoint* sets A and B such that A, B , and $S = A \cup B$ have the sizes above.
- The equation then follows by the Sum Rule.

Example – Pascal's Identity Fact. $\binom{n}{k}$ = $\binom{n-1}{k+1} + \binom{n-1}{k}$ $|S| = |A| + |B|$

Combinatorial proof idea: Find disjoint sets A and B such that A, B , and $S = A \cup B$ have these sizes

$$
|S| = {n \choose k}
$$

S: set of size k subsets of $[n] = \{1, 2, \cdots, n\}$

e.g. $n = 4, k = 2, S = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}\$

A: set of size k subsets of $[n]$ that DO include n $A = \{ \{1,4\}, \{2,4\}, \{3,4\} \}$

B: set of size k subsets of $[n]$ that DON'T include n $B = \{ \{1,2\}, \{1,3\}, \{2,3\} \}$

Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B = \emptyset)$

But what if the sets are not disjoint?

 $|A| = 43$ $|B| = 20$ $|A \cap B| = 7$ $|A \cup B| = ? ? ?$

Fact. $|A \cup B| = |A| + |B| - |A \cap B|$

Fact.

\n
$$
|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|
$$

Pf:

Consider any element $x \in A \cup B \cup C$. Suppose x is in k sets. Then x contributes: $\binom{k}{1} - \binom{k}{2} + \cdots \binom{k}{k}$ by Binomial theorem, $=$ \boldsymbol{k} $= 1$.

0

Let A , B be sets. Then $|A \cup B| = |A| + |B| - |A \cap B|$

In general, if $A_1, A_2, ..., A_n$ are sets, then

$$
|A_1 \cup A_2 \cup \dots \cup A_n| = single s - double s + triples - quads + ...
$$

= $(|A_1| + \dots + |A_n|) - (|A_1 \cap A_2| + ... + |A_{n-1} \cap A_n|) + ...$

Brain Break

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 holes

At least one hole must get 2 pigeons!

Pigeonhole Principle – More generally

If there are *n* pigeons in $k < n$ holes, then one hole must contain at least $\frac{n}{k}$ $\frac{n}{k}$ pigeons!

Proof. Assume there are $\lt \frac{n}{k}$ $\frac{n}{k}$ pigeons per hole. Then, there are $\langle k \cdot \rangle$ \overline{n} \boldsymbol{k} $= n$ pigeons overall. Contradiction!

Pigeonhole Principle – Better version

If there are *n* pigeons in $k < n$ holes, then one hole must contain at least $\left[\frac{n}{k}\right]$ $\frac{n}{k}$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: $[x]$ is x rounded up to the nearest integer (e.g., $[2.731] = 3$)
- Floor: x is x rounded down to the nearest integer (e.g., $[2.731] = 2$)

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeonhole Principle – Example

In a room with 367 people, there are at least two with the same birthday.

Solution:

- 1. **367** pigeons = people
- 2. **366** holes (365 for a normal year + Feb 29) = possible birthdays
- 3. Person goes into hole corresponding to own birthday
- By PHP, there must be two people with the same birthday

Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least *two elements whose difference is a multiple of 37.*

When solving a PHP problem:

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeonhole Principle – Example (Surprising?)

In every set S of 100 integers, there are at least *two elements whose difference is a multiple of 37.*

When solving a PHP problem:

- 1. Identify pigeons
- 2. Identify pigeonholes
- 3. Specify how pigeons are assigned to pigeonholes
- 4. Apply PHP

Pigeons: integers x in S

Pigeonholes: {0,1,…,36}

Assignment: x goes to x mod 37

Since 100 > 37, by PHP, there are $x \neq y \in S$ s.t. x mod 37 = y mod 37 which implies $x - y = 37 k$ for some integer k

Pigeonhole Principle – Example

In every sequence of *n* numbers, there must be *either an increasing subsequence of* \sqrt{n} *numbers or a decreasing sequence of* \sqrt{n} *numbers.*

Example: 1,2,3,4,5,6,7,8,9 9,8,7,6,5,4,3,2,1 3,4,2,1,7,9,8,5,6 *Given* $x_1, x_2, ..., x_n$.

Suppose longest increasing subseq is of length , longest decreasing subseq is of length .

Pigeons: $\{1, ..., n\}$. Holes: $\{1, ..., I\} \times \{1, ..., D\}$.

Put pigeon i in hole (a, b) *if a is longest inc. subseq. ending at* x_i *, b is longest dec. subseq. ending at* x_i .

Claim: < *cannot be mapped to the same hole! Pf:* If $x_i \leq x_j$, longest inc subseq ending at x_i can be extended by *adding* x_i . So, length of longest inc subseq cannot be same for x_i , x_i . *Similarly, if* $x_i \geq x_j$...

Given $x_1, x_2, ..., x_n$.

Suppose longest increasing subseq is of length , longest decreasing subseq is of length .

Pigeons: $\{1, ..., n\}$. Holes: $\{1, ..., I\} \times \{1, ..., D\}$.

Put pigeon *i* in hole (a, b) if a is longest inc. subseq. ending at x_i , b *is longest dec. subseq. ending at* x_i .

Claim: $i < j$ *cannot be mapped to the same hole.*

Then we must have $I \cdot D \ge n$ *, so either* $I \ge \sqrt{n}$ *or* $D \ge \sqrt{n}$ *.*