CSE 312 Foundations of Computing II

Lecture 2: Combinations and Binomial Coefficients

Announcements

Homework:

• Pset1 was posted on Wednesday and is due 11:59pm next Wednesday.

Announcements

• **EdStem discussion etiquette**

- OK to publicly discuss content of the course and any confusion over topics discussed in class, but **not** *solutions* for current homework problems, or anything about current exams that have not yet been graded.
- It is also acceptable to ask for clarifications about what current homework problems are asking and concepts behind them, just not about their solutions.

Quick counting summary from last class

- Sum rule:
	- If you can choose from
		- EITHER one of n options,
		- OR one of *m* options with NO overlap with the previous *n*,

then the number of possible outcomes of the experiment is $n + m$

• Product rule:

In a sequential process, if there are

- n_1 choices for the 1st step,
- $n₂$ choices for the 2nd step (given the first choice), ..., and
- n_k choices for the k^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times n_3 \times \cdots \times n_k$

• Representation of the problem is important (creative part)

Factorial

"How many ways to order elements in S, where $|S| = n$?" **Permutations**

Answer =
$$
n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1
$$

Definition. The **factorial function** is

$$
n! = n \times (n-1) \times \cdots \times 2 \times 1
$$

Note:
$$
0! = 1
$$

Theorem. (Stirling's approximation) $\overline{2\pi} \cdot n^{n+1}$ $\mathbf{1}$ $\frac{1}{2} \cdot e^{-n} \leq n! \leq e \cdot n^{n+1}$ $\mathbf{1}$ $\bar{2} \cdot e^{-n}$ $= 2.5066$ $= 2.7183$

Huge: Grows exponentially in

Distinct Letters

"How many sequences of 5 *distinct alphabet letters from* ${A, B, ..., Z}$?"

E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: 26×25×24×23×22 = 7893600

Fact. # of k -element sequences of distinct symbols from an n -element set is

$$
P(n,k) = n \times (n-1) \times \cdots \times (n-k+1) = \frac{n!}{(n-k)!}
$$

Today: More Counting

• **Permutations and Combinations**

Number of Subsets

"How many size-5 **subsets** of $\{A, B, ..., Z\}$?" E.g., {A,Z,U,R,E}, {B,I,N,G,O}, {T,A,N,G,O}. But not: ${S,T,E,V}, {S,A,R,H},...$

Difference from k -permutations: NO ORDER Different sequences: TANGO, OGNAT, ATNGO, NATGO, ONATG … Same set: {T,A,N,G,O}, {O,G,N,A,T}, {A,T,N,G,O}, {N,A,T,G,O}, {O,N,A,T,G}… … **Number of Subsets – Idea**

Consider a sequential process:

- 1. Choose a subset $S \subseteq \{A, B, ..., Z\}$ of size $|S| = 5$ e.g. $S = \{A, G, N, O, T\}$
- 2. Choose a permutation of letters in S e.g., *TANGO, AGNOT, NAGOT, GOTAN, GOATN, NGOAT, …*

Outcome: A sequence of 5 distinct letters from $\{A, B, ..., Z\}$

$$
\binom{26}{5} = \frac{26!}{21!5!} = 65780
$$

26!

=

5!

×

5

26

21!

Number of Subsets – Binomial Coefficient

Fact. The number of subsets of size k of a set of size n is \overline{n} \boldsymbol{k} = $n!$ $k! (n - k)!$

Binomial coefficient (verbalized as " n choose k ")

Symmetry in Binomial Coefficients

This is called an Algebraic proof, i.e., Prove by checking algebra

Proof. $\binom{n}{k}$ \boldsymbol{k} = $n!$ $k!(n-k)!$ = $n!$ $(n-k)!k!$ = \overline{n} $n-k$ Why?? <u>(OO</u>

Symmetry in Binomial Coefficients – A different proof

$$
\mathsf{Fact.}\left(\begin{matrix}n\\k\end{matrix}\right)=\binom{n}{n-k}
$$

Two equivalent ways to choose k out of n objects (unordered)

- 1. Choose which k elements are included
- 2. Choose which $n k$ elements are excluded

Example – Counting Paths

"How many shortest paths from Gates to Starbucks?"

Example – Counting Paths

How do we represent a shortest path?

Example – Counting Paths

Example – Sum of integers

"How many solutions
$$
(x_1, ..., x_k)
$$
 such that
 $x_1, ..., x_k \ge 0$ and $\sum_{i=1}^k x_i = n$?"

Example: $k = 3$, $n = 5$

 $(0,0,5)$, $(5,0,0)$, $(1,0,4)$, $(2,1,2)$, $(3,1,1)$, $(2,3,0)$, ...

Hint: we can represent each solution as a binary string.

"How many solutions $(x_1,...,x_k)$ such that $x_1, ..., x_k \ge 0$ and $\sum_{i=1}^k x_i = n$?"

Example: $k = 3$, $n = 5$

 $(0,0,5)$, $(5,0,0)$, $(1,0,4)$, $(2,1,2)$, $(3,1,1)$, $(2,3,0)$, ...

Clever representation of solutions

"How many solutions $(x_1, ..., x_k)$ *such that* $x_1, ..., x_k \ge 0$ and $\sum_{i=1}^k x_i = n$?"

Example: $k = 3$, $n = 5$

sols = # strings from $\{0,1\}^7$ w/ exactly two 0s $\bar{=}$

7 2 $= 21$

Clever representation of solutions

Example - Sum of integers

"How many solutions
$$
(x_1, ..., x_k)
$$
 such that $x_1, ..., x_k \ge 0$ and $\sum_{i=1}^k x_i = n$?"

sols = # strings from
$$
\{0,1\}^{n+k-1}
$$
 w/ $k-1$ 0s
= $\binom{n+k-1}{k-1}$

The problem reduces to counting combinations!

More general counting using binary encoding*

The number of ways to distribute *n* indistinguishable balls into k distinguishable bins is

$$
\binom{n+k-1}{k-1} = \binom{n+k-1}{n}
$$

Example with k non-negative integers summing to n : bins are the k integers, balls are the n 1's that add to n .

How many ways can you distribute 32 identical coins among Alex, Barbara, Charlie, Dana, and Eve?

1. Identify balls 2. Identify bins

$$
\binom{32+5-1}{5-1}
$$

A mixed example – Word Permutations (aka Anagrams)

"How many ways to re-arrange the letters in the word SEATTLE?

STALEET, TEALEST, LASTTEE, …

Guess: 7! Correct?!

No! e.g., swapping two T's also leads to *SEATTLE* swapping two E's also leads to *SEATTLE*

Counted as separate permutations, but they lead to the same word.

A mixed example – Word Permutations (aka Anagrams)

"How many ways to re-arrange the letters in the word SEATTLE?

STALEET, TEALEST, LASTTEE, …

Another way to look at SEATTLE

"How many ways to re-arrange the letters in the word SEATTLE?

STALEET, TEALEST, LASTTEE, …

$$
{7 \choose 2} \times {5 \choose 2} \times 3 \times 2 \times 1 = \frac{7!}{2! \cancel{5!}} \times \frac{5!}{2! \cancel{3!}} \times 3!
$$

=
$$
\frac{7!}{2! \cancel{2!}} = 1260
$$

Another interpretation:

26 Arrange the 7 letters as if they were distinct. Then divide by 2! to account for 2 duplicate T's, and divide by 2! again for 2 duplicate E's.

More generally...

How many ways can you arrange the letters in "Godoggy"?

$$
n = 7 \text{ Letters}, k = 4 \text{ Types } \{G, O, D, Y\}
$$

3

$$
n_1=3, n_2=2, n_3=1, n_4=1
$$

$$
\frac{7!}{12!1!1!} = \binom{7}{3,2,1,1}
$$

Multinomial Coefficients

If we have k types of objects (**n** total), with n_1 of the first type, n_2 of the second, ..., and n_k of the k^{th} , then the number of orderings possible is

$$
\binom{n}{n_1, n_2, \cdots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}
$$

Binomial Coefficients – Many interesting and useful properties

Binomial Theorem: Idea

Poll: What is the coefficient for xy^3 ?

A. 4

 $B.$ $($ ⁴

1

$$
(x + y)2 = (x + y)(x + y)
$$

= $xx + xy + yx + yy$
= $x2 + 2xy + y2$

$$
\begin{array}{cc}\nC. & \binom{4}{3} \\
D. & 3\n\end{array}
$$

https://pollev.com/paulbeame028

Binomial Theorem: Idea

$$
(x + y)n = (x + y) \dots (x + y)
$$

Each term is of the form $x^k y^{n-k}$, since each term is made by multiplying exactly *n* variables, either x or y, one from each copy of $(x + y)$

How many times do we get $x^k y^{n-k}$?

The number of ways to choose x from exactly k of the n copies of $(x + y)$ (the other $n - k$ choices will be y) which is:

$$
\binom{n}{k} = \binom{n}{n-k}
$$

Binomial Theorem

$$
(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}
$$

Many properties of sums of binomial coefficients can be found by plugging in different values of x and y in the Binomial Theorem.

Corollary. \sum $k=0$ \pmb{n} \overline{n} \boldsymbol{k} $= 2^n$

Apply with $x = y = 1$

Quick Summary

- k -sequences: How many length k sequences over alphabet of size n ? - Product rule \rightarrow n^k
- k -permutations: How many length k sequences over alphabet of size n , without repetition?

$$
\text{Permutation} \rightarrow \frac{n!}{(n-k)!}
$$

• k -combinations: How many size k subsets of a set of size n (without repetition and without order)?

$$
-\text{ combination} \rightarrow {n \choose k} = \frac{n!}{k!(n-k)!}
$$