CSE 312 Foundations of Computing II

Lecture 1: Introduction & Counting

https://cs.washington.edu/312

Instructors

Stefano Tessaro (he/him) tessaro [at] cs.washington.edu Anup Rao (he/him) anuprao [at] cs.washington.edu

A Team of fantastic TAs

Simran Bagaria

YanXi (Nancy) Cui

Zhi Yang Lim (Lim)

Di Mao

Octavian-Vlad Murad

Millan Jeffrey Philipose

Emily Robinson

Michael Whitmeyer

Jolie Zhou

See https://cs.washington.edu/312/staff.html to learn more about their backgrounds and interests!

Lectures and Sections

- Lectures MWF (ARC 147)
 - 1:30-2:20pm
 - Lecture recording/streaming will be available!
 - Slides are also available.

Poll Everywhere

- We will sometimes use Poll Everywhere during class
- You sign up directly

• Sections Thu (starts this week)

- Not recorded
- Will prepare you for problem sets!

Go to <u>https://www.pollevery</u> <u>where.com/login</u> and login using <u>YOURNETID@uw.edu</u>

Questions and Discussions

- Office hours throughout the week (starting this Friday)
 - See https://cs.washington.edu/312/staff.html
- Ed Discussion
 - You should have received an invitation (synchronized with the class roster)
 - Material (resources tab)
 - Announcements (discussion tab)
 - Discussion (discussion tab)

Use Ed discussion forum as much as possible. You can make private posts that only the staff can view! Email instructor for personal issues.

Engagement

- "Concept checks" after each lecture 5-8 %
 - Must be done (on Gradescope) before the next lecture by 1:00 pm.
 - <u>Simple</u> questions to reinforce concepts taught in each class
 - Keep you engaged throughout the week, so that homework becomes less of a hurdle
- 9 Problem Sets (Gradescope) 45-50 %
 - Solved individually. Discussion with others allowed but separate solutions
 - Generally due Wednesdays starting next week, except for midterm week but Fridays after Thanksgiving
 - First problem set posted later today
- Midterm 15-20 %
 - In class on Wednesday, October 30
- Final Exam 30-35 %
 - Monday, December 9 at 2:30-4:20 pm in this room (as in UW Autumn Quarter Exam Schedule)

Check out the syllabus for policies on late submission for checkpoints and HW

Foundations of Computing II

Intro to Counting, Probability & Statistics

Probability

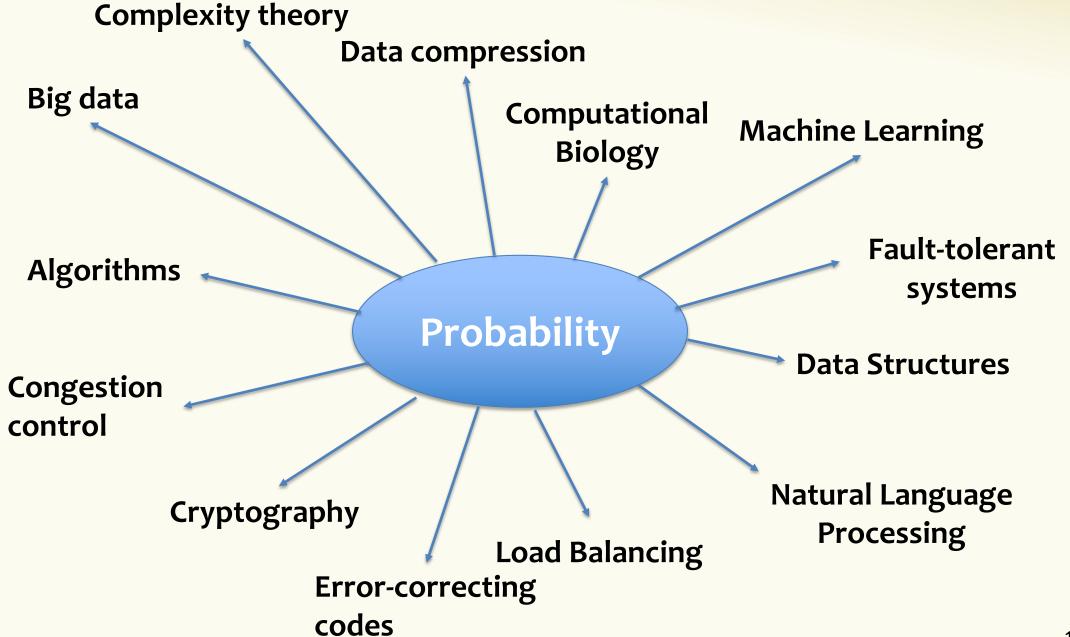
- The math to understand randomness
- Best way to understand complex systems even if there is no randomness!

Probability in Computer Science

- Understanding random inputs to algorithms
 - ML, program testing, algorithm analysis, ...
- Understanding hidden information
 - Cryptography, privacy, fault tolerance, computer security, ...
- Efficient algorithms and systems design
 - Data structures, systems, algorithms, ML, ...

• • •

+ much more!



Content

- Counting (basis of discrete probability)
 - Counting, Permutation, Combination, inclusion-exclusion, Pigeonhole Principle
- What is probability
 - Probability space, events, basic properties of probabilities, conditional probability, independence, expectation, variance
- Properties of probability
 - Various inequalities, Zoo of discrete random variables, Concentration, Tail bounds
- Continuous Probability
 - Probability Density Functions, Cumulative Density Functions, Uniform, Exponential, Normal distributions, Central Limit Theorem, Estimation
- Applications
 - A sample of randomized algorithms, differential privacy, learning ...

Today: A fast introduction to counting so you will have enough to work on in section tomorrow...

How to count objects with a property?

"How many ways are there to assign 7 TAs to 5 sections, such that each section is assigned to two TAs, and no TA is assigned to more than two sections?"

Abstractly: What is the size of a set *S*?

(Discrete) Probability and Counting are the same

"Probability that a uniformly random student has black hair?"

students with black hair

#students

Today – Two basic rules

- Sum rule
- Product rule

Sum Rule

If you can choose from

- EITHER one of *n* options,
- OR one of *m* options with NO overlap with the previous *n*

then the number of possible outcomes of the experiment is

n + m

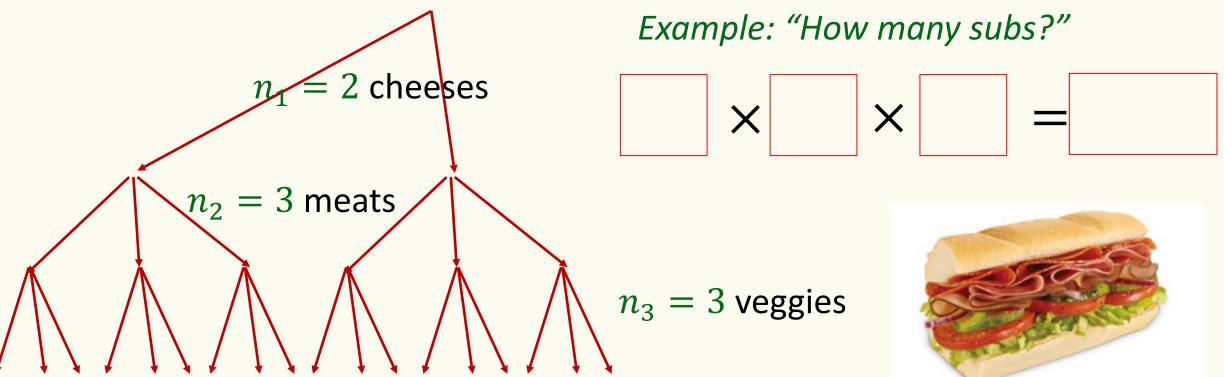
Counting "lunches"

If a lunch order consists of **either** one of 6 soups **or** one of 9 salads, how many different lunch orders are possible?

Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

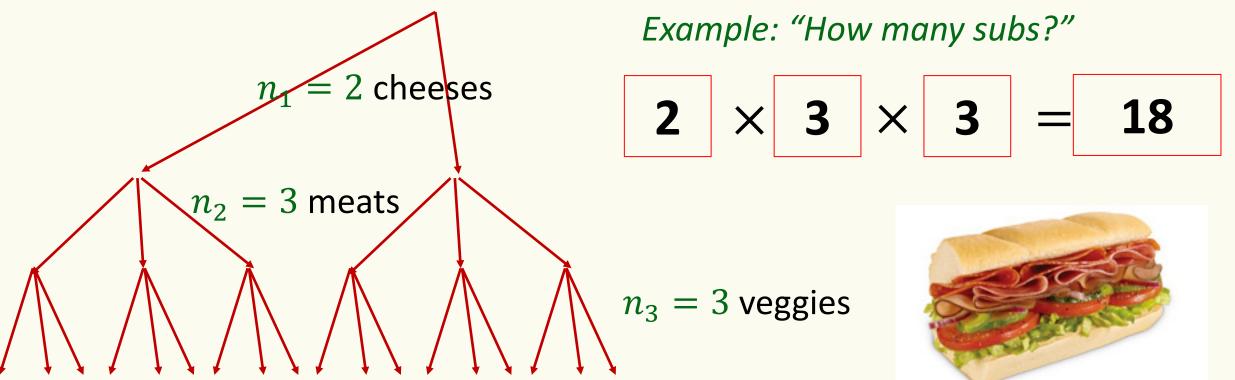
then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$



Product Rule: In a sequential process, there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- n_m choices for the m^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_m$



Product rule examples – Strings

How many strings of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

$$| x | x | x | x | =$$

Product rule examples – Strings

How many strings of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

26
$$\times$$
 26 \times **26** \times **26** \times **26** $=$ **26**⁵

How many binary strings of length n over the alphabet $\{0,1\}$?

• E.g., $0 \cdots 0, 1 \cdots 1, 0 \cdots 01, \dots$ \times \times \times \times \times \times =

Product rule examples – Strings

How many strings of length 5 over the alphabet $\{A, B, C, ..., Z\}$ are there?

• E.g., AZURE, BINGO, TANGO, STEVE, SARAH, ...

26
$$\times$$
 26 \times **26** \times **26** \times **26** $=$ **26**⁵

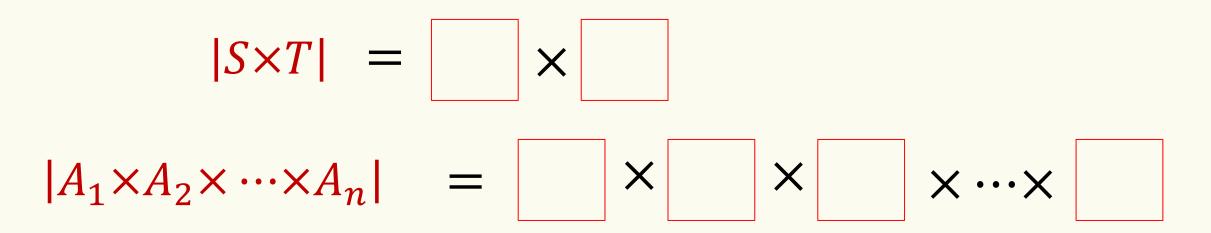
How many binary strings of length n over the alphabet $\{0,1\}$?

• E.g.,
$$0 \cdots 0, 1 \cdots 1, 0 \cdots 01, ...$$

2 × **2** × **2** × ···× **2** = **2**ⁿ

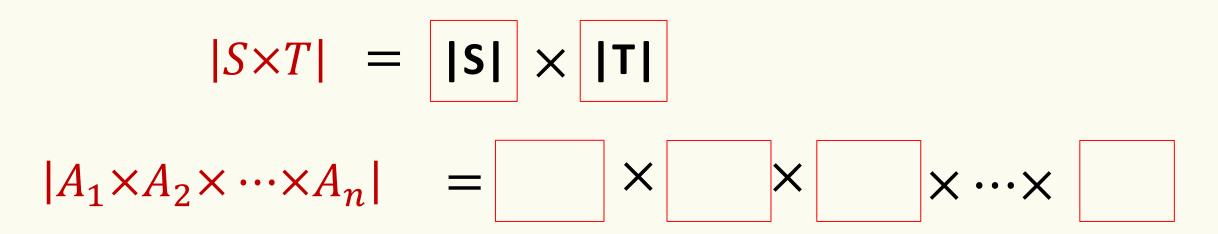
Product rule example – Cartesian Product

Definition. The cartesian product of two sets S, T is $S \times T = \{(a, b) : a \in S, b \in T\}$



Product rule example – Cartesian Product

Definition. The cartesian product of two sets *S*, *T* is $S \times T = \{(a, b) : a \in S, b \in T\}$



Product rule example – Cartesian Product

Definition. The cartesian product of two sets S, T is $S \times T = \{(a, b) : a \in S, b \in T\}$

$$|S \times T| = |S| \times |T|$$
$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \times |A_2| \times |A_3| \times \cdots \times |A_n|$$

Product rule example – Power set

Definition. The **power set** of *S* is the set of all subsets of *S*, $\{X: X \subseteq S\}$. Notations: $\mathcal{P}(S)$ or simply 2^{S} (which we will use).

Example.
$$2^{\{\bigstar, \bigstar\}} = \{\emptyset, \{\bigstar\}, \{\bigstar\}, \{\bigstar\}, \{\bigstar, \bigstar\}\}$$

 $2^{\emptyset} = \{\emptyset\}$

How many different subsets of *S* are there if |S| = n?

Product rule example – Power set

set $S = \{e_1, e_2, e_3, \cdots, e_n\}$ subset $X = \{$ × ··· ×

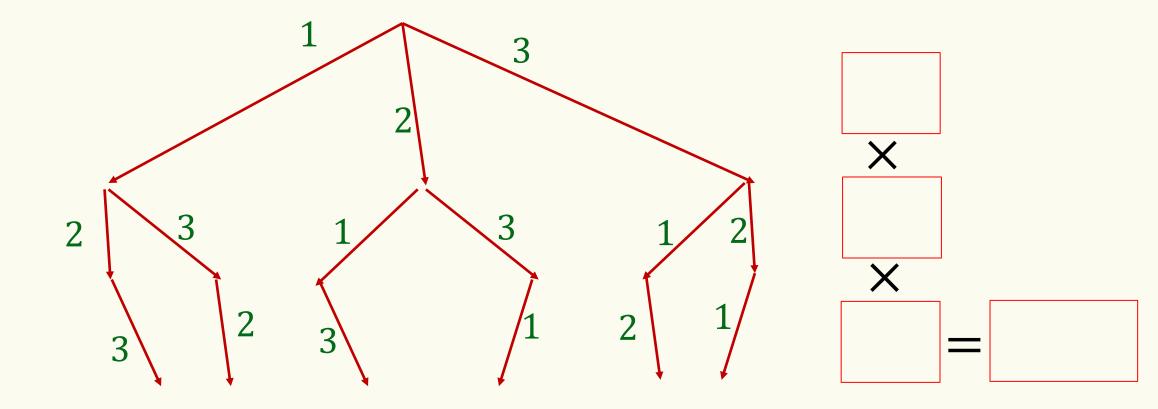
Product rule example – Power set

set
$$S = \{e_1, e_2, e_3, \cdots, e_n\}$$

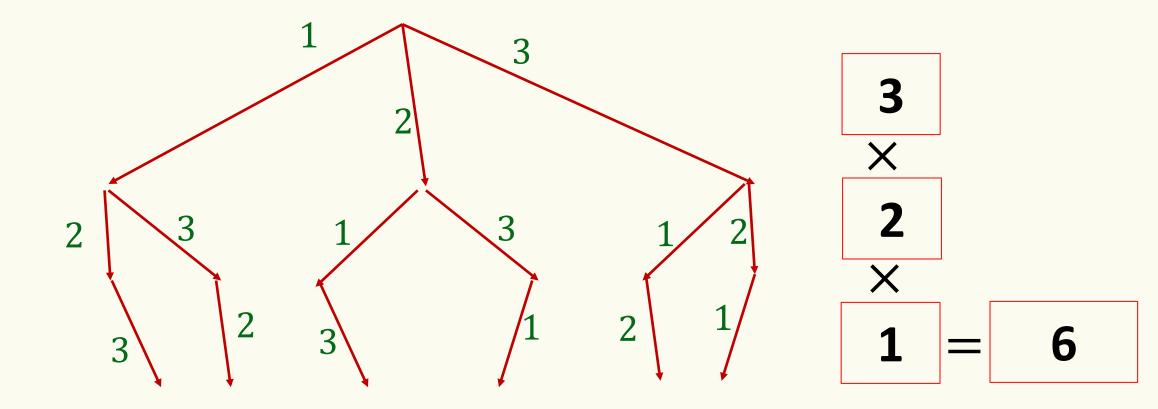
subset $X = \{$ }
 $2 \times 2 \times 2 \times \cdots \times 2 = 2^n$

Proposition.
$$|2^{S}| = 2^{|S|}$$

How many strings in $\{1,2,3\}^3$ with no repeating elements? 123, 132, 213,...



How many strings in $\{1,2,3\}^3$ with no repeating elements? 123, 132, 213,...



Factorial

"How many ways to order n elements?"

Permutations

Answer =
$$n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

Definition. The **factorial function** is

 $n! = n \times (n-1) \times \dots \times 2 \times 1$

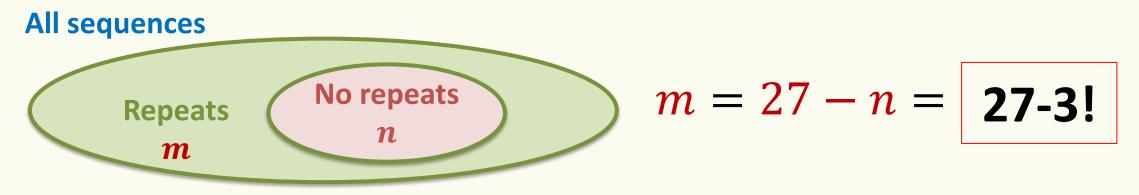
Note: 0! = 1

Nice use of sum rule: Counting using complements

"How many sequences in $\{1,2,3\}^3$ have repeating elements?" m

"# of sequences in $\{1,2,3\}^3$ with no repeating elements" n = 3!

"# of sequences in
$$\{1,2,3\}^3$$
 $3^3 = 27 = m + n$ by the sum rule



Distinct Letters

"How many sequences of 5 **distinct** alphabet letters from $\{A, B, ..., Z\}$?"

E.g., AZURE, BINGO, TANGO. But not: STEVE, SARAH

Answer: $26 \times 25 \times 24 \times 23 \times 22 = 7893600$

Fact. # of *k*-element sequences of distinct symbols from an *n*-element set is

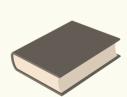
$$P(n,k) = n \times (n-1) \times \cdots \times (n-k+1) = \frac{n!}{(n-k)!}$$

Product rule – One more example

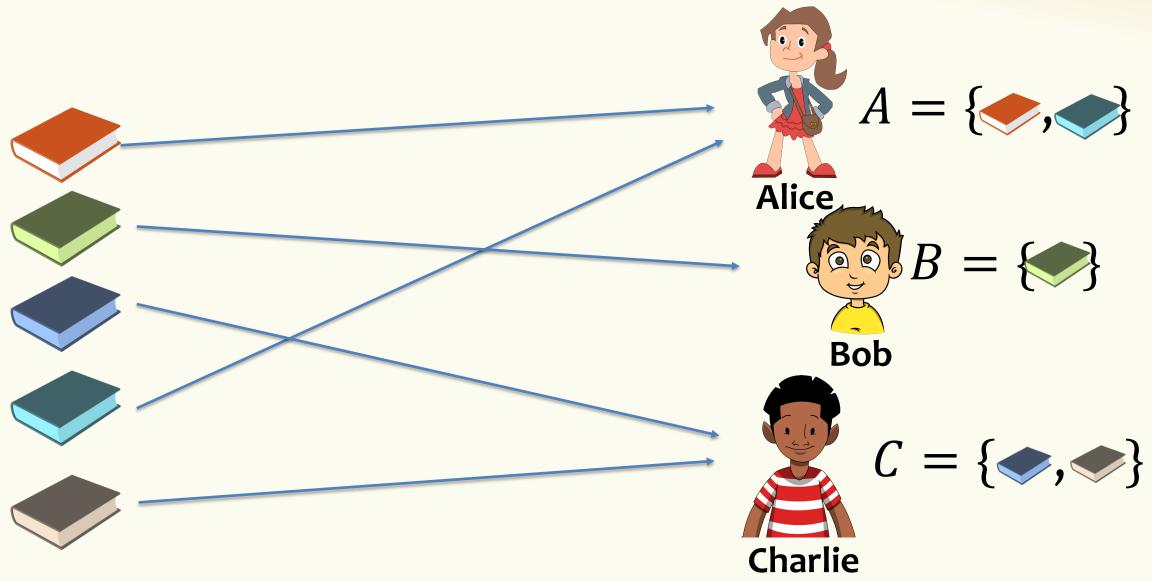
5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

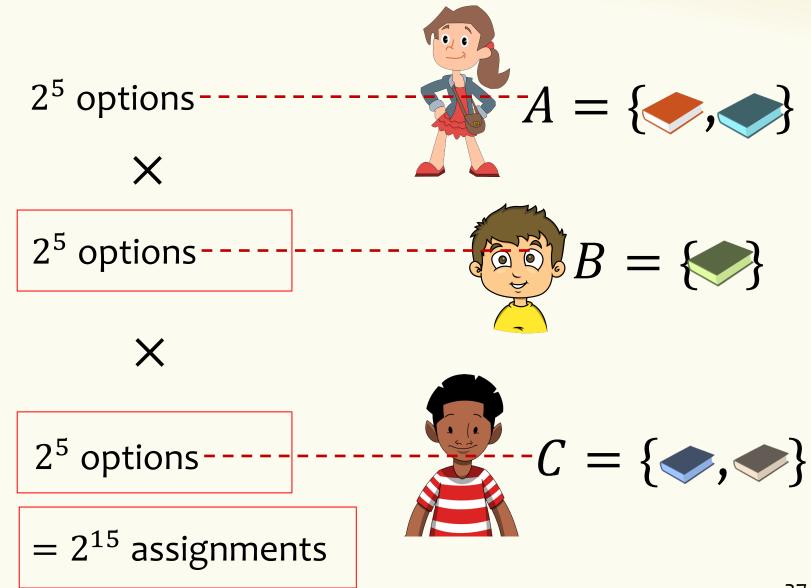
Every book to one person, everyone gets ≥ 0 books.



Example Book Assignment



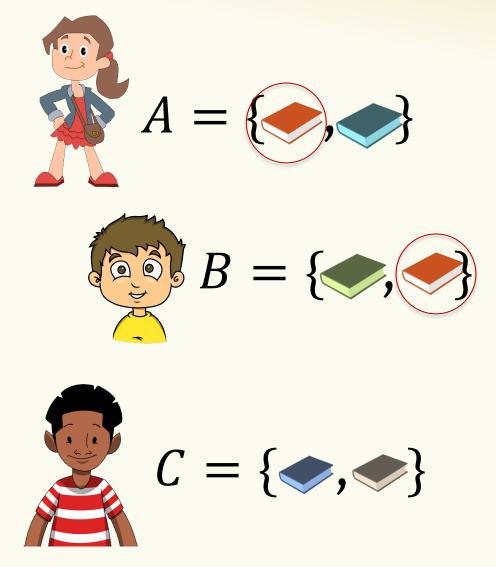
Book assignment – Modeling



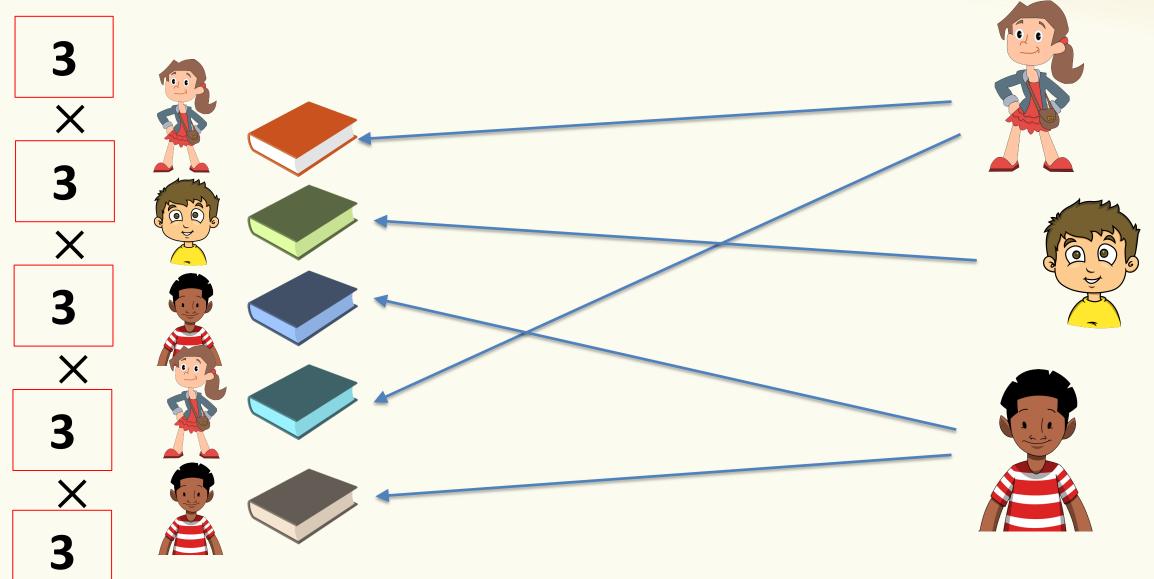
Problem – Overcounting

Problem: We are counting some invalid assignments!!! → overcounting!

What went wrong in the sequential process?After assigning *A* to Alice,*B* is no longer a valid option for Bob



Book assignments – A Clever Approach



Lesson: Representation of what we are counting is very important!

Tip: Use different methods to double check yourself! Think about counter examples to your own solution! Start with a smaller version of the same problem! The first concept check is out and due at 1:00pm before Friday's lecture