
CSE 312: Foundations of Computing II Autumn 2024

Quiz Section 4 – Solutions
Review

1) Probability Mass. For every random variable X, we have
ř

x P pX “ xq “ .

2) Expectation. E rXs “ .

3) Linearity of expectation. For any random variables X1, . . . , Xn, and real numbers a1, . . . , an,

E ra1X1 ` ¨ ¨ ¨ ` anXns “ .

4) Variance. Var pXq “ ErpX ´ ErXsq2s “ ErX2s ´ ErXs2 Var paX ` bq “ Var pXq.

5) Independence. Two random variables X and Y are independent if .

6) Variance and Independence. For any two independent random variables X and Y , Var pX ` Y q “

Task 1 – Identify that range!

Identify the support/range ΩX of the random variable X, if X is...

a) The sum of two rolls of a six-sided die.

X takes on every integer value between the min sum 2, and the max sum 12.
ΩX “ t2, 3, ..., 12u

b) The number of lottery tickets I buy until I win it.

X takes on all positive integer values (I may never win the lottery).
ΩX “ t1, 2, ...u “ N

c) The number of heads in n flips of a coin with 0 ă Ppheadq ă 1.

X takes on every integer value between the min number of heads 0, and the max n.
ΩX “ t0, 1, ..., nu

d) The number of heads in n flips of a coin with Ppheadq “ 1.

Since Ppheadq “ 1, we are guaranteed to get n heads in n flips.
ΩX “ tnu

Task 2 – Symmetric Difference

Suppose A and B are random, independent (possibly empty) subsets of t1, 2, . . . , nu, where each subset is equally
likely to be chosen as A or B. Consider A∆B “ pA X BCq Y pB X ACq “ pA Y Bq X pAC Y BCq, i.e., the set
containing elements that are in exactly one of A and B. Let X be the random variable that is the size of A∆B.
What is ErXs?

1



For i “ 1, 2, . . . , n, let Xi be the indicator of whether i P A∆B. Further, let Yi and Zi be the
indicator variables of whether i P A and i P B, respectively. Then,

P pYi “ 1q “ P pZi “ 1q “
2n´1

2n
“

1

2
,

where we have used the fact that exactly half of the 2n subsets of rns contain i. Further,

ErXis “ P pXi “ 1q “ P pYi “ 0, Zi “ 1q ` P pYi “ 1, Zi “ 0q

“ P pYi “ 0qP pZi “ 1q ` P pYi “ 1qP pZi “ 0q

“
1

2
¨
1

2
`

1

2
¨
1

2
“

1

2
,

where we have used the fact that Yi, Zi are independent.

Then X “
řn

i“1 Xi, so

ErXs “ E

«

n
ÿ

i“1

Xi

ff

“
n

2

.

Task 3 – Hungry Washing Machine

You have 10 pairs of socks (so 20 socks in total), with each pair being a different color. You put them in the
washing machine, but the washing machine eats 4 of the socks chosen at random. Every subset of 4 socks is
equally probable to be the subset that gets eaten. Let X be the number of complete pairs of socks that you have
left.

a) What is the range of X, ΩX (the set of possible values it can take on)? What is the probability mass function
of X?

The washing machine eats 4 socks every time. It can either eat a single sock from 4 pairs of socks,
leaving us with 6 complete pairs, or a single sock from 2 pairs and a matching pair, leaving us with
7 complete pairs, or 2 pairs of matching socks, leaving us with 8 complete pairs.

ΩX “ t6, 7, 8u

We are dealing with a sample space with equally likely outcomes. As such, we can compute use

the formula P pEq “
|E|

|Ω|
. We know that |Ω| “

`

20
4

˘

because the washing machine picks a set of 4

socks out of 20 possible socks.

To define the pmf of X, we consider each value in the range of X.

For k “ 6, we first pick 4 out of 10 pairs of socks from which we will eat a single sock (
`

10
4

˘

ways), and for each of these 4 pairs we have two socks to pick from (
`

2
1

˘4
ways). Using the product

rule, we get |X “ 6| “
`

10
4

˘

24.

For k “ 7, we first pick 1 out of 10 pairs of socks to eat in its entirety (
`

10
1

˘

ways), and then

2 out of the 9 remaining pairs from which we will eat a single sock (
`

9
2

˘

ways), and for each

of these 2 pairs we have two socks to pick from (
`

2
1

˘2
ways). Using the product rule, we get

|X “ 7| “ 10
`

9
2

˘

22.

For k “ 8, we pick 2 out of 10 pairs of socks to eat (
`

10
2

˘

ways). We get |X “ 8| “
`

10
2

˘

.
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pXpkq “

$

’

’

’

’

&

’

’

’

’

%

p10
4 q24

p20
4 q

k “ 6

10p9
2q2

2

p20
4 q

k “ 7

p10
2 q

p20
4 q

k “ 8

b) Find E rXs from the definition of expectation.

ErXs “
ÿ

kPΩX

k ¨ pXpkq “ 6 ¨

`

10
4

˘

24
`

20
4

˘ ` 7 ¨
10

`

9
2

˘

22
`

20
4

˘ ` 8 ¨

`

10
2

˘

`

20
4

˘ “
120

19

c) Find E rXs using linearity of expectation.

For i P r10s, let Xi be 1 if pair i survived, and 0 otherwise. Then, X “
ř10

i“1 Xi. But ErXis “

1 ¨ PpXi “ 1q ` 0 ¨ PpXi “ 0q “ PpXi “ 1q “
p18

4 q

p20
4 q

, where the numerator indicates the number of

ways of choosing 4 out the 18 remaining socks (we spare our chosen pair i). Hence,

ErXs “ Er

10
ÿ

i“1

Xis “

10
ÿ

i“1

ErXis “

10
ÿ

i“1

`

18
4

˘

`

20
4

˘ “ 10

`

18
4

˘

`

20
4

˘ “
120

19

d) Which way was easier? Doing both (a) and (b), or just (c)?

Part (c) is was probably much easier. In this problem, you may have found part (a) and (b) easier,
because there were only 3 possible values in the range of X. However, in general computing the
probability mass function of complicated random variables (ones with hundreds of elements in their
range) can be very difficult. Often it is much easier to use linearity of expectation and compute the
probability mass function of simpler random variables.

Task 4 – Balls in Bins

Let X be the number of bins that remain empty when m balls are distributed into n bins randomly and indepen-
dently. For each ball, each bin has an equal probability of being chosen. (Notice that two bins being empty are
not independent events: if one bin is empty, that decreases the probability that the second bin will also be empty.
This is particularly obvious when n “ 2 and m ą 0.) Find ErXs.

For i P rns, let Xi be 1 if bin i is empty, and 0 otherwise. Then, X “
řn

i“1 Xi. We first compute
ErXis “ 1 ¨ PpXi “ 1q ` 0 ¨ PpXi “ 0q “ PpXi “ 1q “ pn´1

n qm. Indeed, we are assuming multiple
balls can go in the same bin. As such, when computing P pXi “ 1q, given that bin i is empty, we
remove it from the pool of possible bins to pick from, leaving us with n ´ 1 bins out of a total of n
bins in which we can place balls. Since we are distributing m balls over the n bins, the event that bin
i remains empty occurs with probability

`

n´1
n

˘m
. Hence, by linearity of expectation:

ErXs “ Er

n
ÿ

i“1

Xis “

n
ÿ

i“1

E rXis “ n ¨

ˆ

n ´ 1

n

˙m
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Task 5 – Frogger

A frog starts on a 1-dimensional number line at 0. At each second, independently, the frog takes a unit step right
with probability p1, to the left with probability p2, and doesn’t move with probability p3, where p1 ` p2 ` p3 “ 1.
After 2 seconds, let X be the location of the frog.

a) Find pXpkq, the probability mass function for X.

Let L be a left step, R be a right step, and N be no step.

The range of X is t´2,´1, 0, 1, 2u. We can compute pXp´2q “ PpX “ ´2q “ PpLLq “ p22,
pXp´1q “ PpX “ ´1q “ PpLN YNLq “ 2p2p3, and pXp0q “ PpX “ 0q “ PpNN YLRYRLq “

p23 ` 2p1p2. Similarly for pXp1q and pXp2q.

pXpkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p22 k “ ´2

2p2p3 k “ ´1

p23 ` 2p1p2 k “ 0

2p1p3 k “ 1

p21 k “ 2

b) Compute E rXs from the definition.

E rXs “ p´2qpp22q ` p´1qp2p2p3q ` p0qpp23 ` 2p1p2q ` p1qp2p1p3q ` p2qpp21q “ 2pp1 ´ p2q

c) Compute E rXs again, but using linearity of expectation.

Let Y be the amount you moved on the first step (either ´1, 0, 1), and Z the amount you moved
on the second step. Then, E rY s “ E rZs “ p1qpp1q ` p0qpp3q ` p´1qpp2q “ p1 ´ p2.

Then X “ Y ` Z and E rXs “ E rY ` Zs “ E rY s ` E rZs “ 2pp1 ´ p2q

Task 6 – 3-sided Die

Let the random variable X be the sum of two independent rolls of a fair 3-sided die. (If you are having trouble
imagining what that looks like, you can use a 6-sided die and change the numbers on 3 of its faces.)

a) What is the probability mass function of X?

First let us define the range of X. A three sided-die can take on values 1, 2, 3. Since X is the sum
of two rolls, the range of X is ΩX “ t2, 3, 4, 5, 6u.

We can then define the pmf of X. To that end, we must define two random variables R1, R2

with R1 being the roll of the first die, and R2 being the roll of the second die. Then, X “ R1 `R2.
Note that ΩR1 “ ΩR2 “ t1, 2, 3u. With that in mind we can find the pmf of X:

pXpkq “ PpX “ kq “
ÿ

iPΩR1

PpR1 “ i, R2 “ k ´ iq

“
ÿ

iPΩR1

PpR1 “ iq ¨ PpR2 “ k ´ iq (By independence of the rolls)

“
ÿ

iPΩR1

1

3
¨ pR2pk ´ iq

“
1

3
ppR2pk ´ 1q ` pR2pk ´ 2q ` pR2pk ´ 3qq
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At this point, we can evaluate the pmf ofX for each value in the range ofX, noting that pR2pk´iq “

0 if k ´ i R ΩR2, 1{3 otherwise. We get:

pXpkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1{9 k “ 2

2{9 k “ 3

3{9 k “ 4

2{9 k “ 5

1{9 k “ 6

One could also list out the possible values of the first two rolls and use a table to find the marginal
pmf of X by summing up the entries of each row for each k P ΩX .

b) Find E rXs directly from the definition of expectation.

E rXs “

6
ÿ

k“2

kpXpkq “ 2 ¨
1

9
` 3 ¨

2

9
` 4 ¨

3

9
` 5 ¨

2

9
` 6 ¨

1

9
“ 4

c) Find E rXs again, but this time using linearity of expectation.

Let R1 be the roll of the first die, and R2 the roll of the second. Then, X “ R1 ` R2.
By linearity of expectation, we get:

E rXs “ ErR1 ` R2s “ ErR1s ` ErR2s

We compute:

ErR1s “
ÿ

iPΩR1

i ¨ PpR1 “ iq “
ÿ

iPΩR1

i ¨
1

3
“

1

3
p1 ` 2 ` 3q “ 2

Similarly, ErR2s “ 2, since the rolls are independent.

Plugging into our expression for the expectation of X gives us:

ErXs “ 2 ` 2 “ 4

d) What is Var pXq?

We know from the definition of variance that

Var pXq “ ErX2s ´ ErXs2

We can compute the ErX2s term as follows:

ErX2s “

6
ÿ

x“2

x2pXpxq “
22 ¨ 1 ` 32 ¨ 2 ` 42 ¨ 3 ` 52 ¨ 2 ` 62 ¨ 1

9
“

52

3

Plugging this into our variance equation gives us

Var pXq “ ErX2s ´ ErXs2 “
52

3
´ 42 “

4

3
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Task 7 – Practice

a) Let X be a random variable with pXpkq “ ck for k P t1, . . . , 5u “ ΩX , and 0 otherwise. Find the value of c
that makes X follow a valid probability distribution and compute its mean and variance (ErXs and Var pXq).

For X to follow a valid probability distribution, we must have
ř

kPΩX
pXpkq “ 1. We can solve for

c so that the equality holds. We know:
ÿ

kPΩX

pXpkq “
ÿ

kPΩX

ck “ c
ÿ

kPΩX

kq “ c ¨ p1 ` 2 ` 3 ` 4 ` 5q “ 15c

So for the normalization of the pmf of X to hold, we must choose c “ 1{15.
We can now use the definition of expectation:

ErXs “ 1 ¨
1

15
` 2 ¨

2

15
` 3 ¨

3

15
` 4 ¨

4

15
` 5 ¨

5

15
“ 55{15 « 3.667

And compute ErXs as follows:

ErX2s “ 12 ¨
1

15
` 22 ¨

2

15
` 32 ¨

3

15
` 42 ¨

4

15
` 52 ¨

5

15
“ 225{15 “ 15

And the variance of X:

Var pXq “ ErX2s ´ E2rXs “ 15 ´ p55{15q2 “
153 ´ 552

15
“

350

225
“

14

9
« 1.556

b) Let X be any random variable with mean ErXs “ µ and variance Var pXq “ σ2. Find the mean and variance

of Z “
X ´ µ

σ
. (When you’re done, you’ll see why we call this a “standardized” version of X!)

We know that EraXs “ a ¨ ErXs for some constant a, and that ErX ` bs “ ErXs ` b for some
constant b. As such, we can compute the expectation of the standardized version of X, knowing
that ErXs “ µ:

ErZs “ E
„

X ´ µ

σ

ȷ

“
1

σ
pErX ´ µsq “

1

σ
pErXs ´ µq “ 0

For the variance, we know that Var paX ` bq “ a2Var pXq. With that in mind, knowing that
Var pXq “ σ2, we can write:

Var pZq “ Var

ˆ

X ´ µ

σ

˙

“
1

σ2
Var pXq “ 1

c) Let X,Y be independent random variables. Find the mean and variance of X ´ 3Y ´ 5 in terms of
ErXs,ErY s,Var pXq, and Var pY q.

Using the linearity of expectation, we can write:

ErX ´ 3Y ´ 5s “ ErXs ´ 3ErY s ´ 5

We also know that the variance of a sum of independent random variables A and B is the sum
of their variances, so that Var pA ` Bq “ Var pAq ` Var pBq. In our case, we have A “ X, and
B “ ´3Y . We get:

Var pX ´ 3Y ´ 5q “ Var pXq ` Var p´3Y q “ Var pXq ` 9Var pY q
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d) Let X1, . . . , Xn be independent and identically distributed (iid) random variables each with mean µ and
variance σ2. The sample mean is X̄ “ 1

n

řn
i“1 Xi. Find the mean and variance of X̄. If you use the

independence assumption anywhere, explicitly label at which step(s) it is necessary for your equalities to be
true.

Using linearity of expectation,

ErXs “ E

«

1

n

n
ÿ

i“1

Xi

ff

“
1

n

n
ÿ

i“1

ErXis “
1

n
nµ “ µ

Var
`

X
˘

“ Var

˜

1

n

n
ÿ

i“1

Xi

¸

“
1

n2

n
ÿ

i“1

Var pXiq “
1

n2
nσ2 “

σ2

n

In the calculation for the variance, we used the independence of the Xi’s.

Task 8 – Expectations, Independence, and Variance

a) Let U be a random variable which is uniform over the set rns “ t1, 2, . . . , nu, i.e, P pU “ iq “ 1
n for all i P rns.

Compute E
“

U2
‰

and Var pUq.

Hint:
řn

i“1 i “
npn`1q

2 and
řn

i“1 i
2 “

npn`1qp2n`1q

6 .

First off, note that

E
“

U2
‰

“
1

n

n
ÿ

i“1

i2 “
1

n

npn ` 1qp2n ` 1q

6
“

pn ` 1qp2n ` 1q

6

by the hint. Also, note that

E rU s “
1

n

n
ÿ

i“1

i “
1

n

npn ` 1q

2
“

n ` 1

2
.

Therefore

Var pUq “ E
“

U2
‰

´ E rU s
2

“
pn ` 1qp2n ` 1q

6
´

pn ` 1q2

4

“
n ` 1

12
¨ p4n ` 2 ´ 3n ´ 3q “

pn ` 1qpn ´ 1q

12
.

b) Let Y1 and Y2 be the independent outcomes of two dice rolls, and let Z “ Y1 ` Y2. Then, compute E
“

Z2
‰

and Var pZq.

Hint: Try to use an indirect solution using linearity and independence, without the need of explicitly giving
the distribution of Z2.

First note that by linearity and independence,

E
“

Z2
‰

“ E
“

Y 2
1

‰

` E
“

Y 2
2

‰

` 2E rY1 ¨ Y2s “ E
“

Y 2
1

‰

` E
“

Y 2
2

‰

` 2E rY1sE rY2s .

We know that E rY1s “ E rY2s “ 21{6. We also know that E
“

Y 2
1

‰

“ E
“

Y 2
2

‰

“ 91{6 (from class).
Thus,

E
“

Z2
‰

“ 91{3 ` 2 ¨ 212{36 “ 91{3 ` 147{6 “ 329{6 .
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On the other hand, we know that E rZs “ 7. Therefore,

Var pZq “ E
“

Z2
‰

´ E rZs
2

“ 329{6 ´ 294{6 “ 35{6 .

We could also have used Var pZq “ Var pY1 ` Y2q “ Var pY1q `Var pY2q “ 35{12 ¨2 “ 35{6, using
the calculation from class for the individual variances.
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