
CSE 312

Foundations of Computing II
Lecture 9: Variance and Independence of RVs
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Agenda

• Recap
• Linearity of expectation
• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Review Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, 𝑃) is a function 𝑋: Ω → ℝ.

The set of values that 𝑋 can take on is its range/support: 𝑿(𝛀)
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Ω

𝑋 𝜔 = 𝑥!

𝑋 𝜔 = 𝑥"

𝑋 𝜔 = 𝑥#

𝑋 𝜔 = 𝑥$
𝑋 = 𝑥% = 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥%}

Random variables partition
the sample space.

Σ&∈((*)𝑃 𝑋 = 𝑥 = 1



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW

𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3 3
1/6 1,	3,	2 1
1/6 2,	1,	3 1
1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 3,	2,	1 1

Ω 2,	3,	1
2,	3,	1
3,	1,	2
2,	3,	1
1,	3,	2
2,	1,	3
3,	2,	1

2,	3,	1
1,	2,	3

𝑿 𝝎 = 𝟎

𝑿 𝝎 = 𝟏

𝑿 𝝎 = 𝟑



Review Expected Value of a Random Variable

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑋 is   

𝔼 𝑋 = ,
!∈#

𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= ,
$∈#!

𝑥 ⋅ 𝑝%(𝑥)𝔼 𝑋 = ,
$∈#!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3 3
1/6 1,	3,	2 1
1/6 2,	1,	3 1
1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 3,	2,	1 1

𝔼 𝑋 = 3 ⋅
1
6
+ 1 ⋅

1
6
+ 1 ⋅

1
6
+ 0 ⋅

1
6
+ 0 ⋅

1
6
+ 1 ⋅

1
6

= 3 ⋅
1
6
+ 1 ⋅

3
6
+ 0 ⋅

2
6

= 1

= 3 ⋅ 𝑃 𝑋 = 𝑥 + 1 ⋅ 𝑃 𝑋 = 𝑥 + 0 ⋅ 𝑃 𝑋 = 𝑥

𝔼 𝑋 = )
!∈#

𝑋 𝜔 ⋅ 𝑃(𝜔)

𝔼 𝑋 = )
$∈%(#)

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Recap Linearity of Expectation
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Theorem. For any two random variables 𝑋 and 𝑌 (𝑋, 𝑌 do not need to be independent)

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   

Theorem. For any random variables 𝑋, and constants 𝑎 and 𝑏
𝔼 𝑎𝑋 + 𝑏 = 𝑎 ⋅ 𝔼[𝑋] + 𝑏.   

For any event 𝐴, can define the indicator random variable 𝑋 for 𝐴

𝑋( = 81 if event 𝐴 occurs
0 if event 𝐴 does not occur

𝑃 𝑋( = 1 = 𝑃 𝐴
𝑃 𝑋( = 0 = 1 − 𝑃 𝐴
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𝔼 𝑍 = )
)*+

,

𝑘 ⋅ 𝑃(𝑍 = 𝑘)

Can we solve it more 
elegantly, please?

This Photo by Unknown Author is 
licensed under CC BY-NC

Example – Coin Tosses – The brute force method 
We flip 𝑛 coins, each one heads with probability 𝑝,
𝑍 is the number of heads, what is 𝔼[𝑍]?   

= )
)*+

,

𝑘 ⋅
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝) 1 − 𝑝 ,-) = )

)*.

,
𝑛!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝) 1 − 𝑝 ,-)

= 𝑛𝑝)
)*.

,
(𝑛 − 1)!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝)-. 1 − 𝑝 ,-)

= 𝑛𝑝)
)*+

,-.
(𝑛 − 1)!

𝑘! 𝑛 − 1 − 𝑘 ! 𝑝
) 1 − 𝑝 (,-.)-)

= 𝑛𝑝)
)*+

,-.
𝑛 − 1
𝑘 𝑝) 1 − 𝑝 (,-.)-) = 𝑛𝑝 𝑝 + 1 − 𝑝 ,-. = 𝑛𝑝 ⋅ 1 = 𝑛𝑝

= )
)*+

,

𝑘 ⋅
𝑛
𝑘 𝑝) 1 − 𝑝 ,-)

http://www.pngall.com/baby-png
https://creativecommons.org/licenses/by-nc/3.0/


Computing complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

𝑋 = 𝑋M +⋯+ 𝑋N
● LOE: Apply linearity of expectation.

𝔼[𝑋] = 𝔼[𝑋M] + ⋯+ 𝔼[𝑋N].   
● Conquer: Compute the expectation of each 𝑋O

Often, 𝑋! are indicator (0/1) random variables.



Example – Coin Tosses

We flip 𝑛 coins, each toss independent, comes up heads with probability 𝑝
𝑍 is the number of heads, what is 𝔼[𝑍]?   

𝑋O = 91, 𝑖
th coin @lip is heads

0, 𝑖th coin @lip is tails.
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Fact. 𝑍 = 𝑋M +⋯+ 𝑋N

Outcomes 𝑋! 𝑋" 𝑋# 𝑍
TTT 0 0 0 0

TTH 0 0 1 1

THT 0 1 0 1

THH 0 1 1 2

HTT 1 0 0 1

HTH 1 0 1 2

HHT 1 1 0 2

HHH 1 1 1 3



Example – Coin Tosses

We flip 𝑛 coins, each toss independent, comes up heads with probability 𝑝
𝑍 is the number of heads, what is 𝔼[𝑍]?   

- 𝑋O = 91, 𝑖
th coin @lip is heads

0, 𝑖th coin @lip is tails.
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𝑃 𝑋% = 1 = 𝑝
𝑃 𝑋% = 0 = 1 − 𝑝

Fact. 𝑍 = 𝑋M +⋯+ 𝑋N

𝔼[𝑋!] = 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ 0 = 𝑝

Linearity of Expectation:
𝔼[𝑍] = 𝔼[𝑋" +⋯+ 𝑋#] = 𝔼[𝑋"] + ⋯+ 𝔼[𝑋#] = 𝑛 ⋅ 𝑝
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This Photo by Unknown Author is licensed under CC BY-SA-NC

Kandinsky

http://spacesbetweenthegaps.wherefishsing.com/2011/10/creative-cauldron-wassily-kandinsky.html
https://creativecommons.org/licenses/by-nc-sa/3.0/


Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All permutations 
equally likely.

• Let 𝑋 be the number of students who get their own HW

What is 𝔼[𝑋]? 
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1



Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All permutations 
equally likely.

• Let 𝑋 be the number of students who get their own HW

What is 𝔼[𝑋]? Use linearity of expectation!

14
𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

LOE: Apply linearity of expectation.
𝔼[𝑋] = 𝔼[𝑋M] + ⋯+ 𝔼[𝑋N]. 

Conquer: Compute the expectation of each 𝑋O and sum! 

Decompose: Find the right way to 
decompose the random variable into 
sum of simple random variables 

𝑋 = 𝑋M +⋯+ 𝑋N



Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
What is 𝔼[𝑋]? Use linearity of expectation!
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1



Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
What is 𝔼[𝑋]? Use linearity of expectation!

16

𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

𝑋O = 1 iff  𝑖𝑡ℎ student gets own HW back

LOE: 𝔼[𝑋] = 𝔼[𝑋M] + ⋯+ 𝔼[𝑋N]

Conquer: 𝔼[𝑋O] =  M
N

Therefore, 𝔼 𝑋 = 𝑛 ⋅ "
#
= 1

Decompose: What is 𝑋O?



Pairs with the same  birthday

● In a class of 𝑚 students, on average how many pairs of people have 
the same birthday (assuming 365 equally likely birthdays; diff people 
independent)?



Pairs with the same  birthday

● In a class of 𝑚 students, on average how many pairs of people have 
the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (𝑖, 𝑗) for 𝑖 ≠ 𝑗
𝑋OP = 1 iff students 𝑖 and 𝑗 have the same birthday

LOE:   
𝑚
2 indicator variables 𝑋OP

Conquer:     𝔼 𝑋OP = M
QRS

so total expectation is   
T
U
QRS

= T(TVM)
WQX

pairs



Agenda

• Recap
• Linearity of expectation
• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Linearity of Expectation – Even stronger

21

Theorem. For any random variables 𝑋M, … , 𝑋N, and real numbers 
𝑎M, … , 𝑎N ∈ ℝ,

𝔼[𝑎M𝑋M +⋯+ 𝑎N𝑋N] = 𝑎M𝔼[𝑋M] + ⋯+ 𝑎N𝔼[𝑋N].   

Very important: In general, we do not have 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]



Linearity is special!

In general 𝔼 𝑔(𝑋) ≠ 𝑔 𝔼 𝑋

E.g., 𝑋 = 9 +1 with prob 1/2−1 with prob 1/2

Then: 𝔼[𝑋U] ≠ 𝔼[𝑋]U

How DO we compute 𝔼[𝑔 𝑋 ]? 



Expected Value of 𝑔(𝑋)

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑔(𝑋) is   

𝔼 𝑔(𝑋) = ,
!∈#

𝑔 𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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= ,
$∈#!

𝑔(𝑥) ⋅ 𝑝%(𝑥)𝔼 𝑔(𝑋) = ,
$∈Y(#)

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)

Also known as LOTUS: “Law of the unconscious statistician

(nothing special going on in the discrete case)



Example: Expectation of 𝑔(𝑋)

Suppose we rolled a fair, 6-sided die in a game. 
You will win the cube of the number rolled in dollars, times 10. 
Let 𝑋 be the result of the dice roll. 
What is your expected winnings?

𝔼 10𝑋$ =

24



Agenda

• Recap
• Linearity of expectation
• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Which game would you rather play?
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Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

𝑊M = payoff in a round of Game 1

𝑃 𝑊M = 2 = M
Q
, 𝑃 𝑊M = −1 = U

Q



Which game would you rather play?

27

Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

𝑊M = payoff in a round of Game 1

𝑃 𝑊M = 2 = M
Q
, 𝑃 𝑊M = −1 = U

Q

𝔼[𝑊M] = 0

𝑊U = payoff in a round of Game 2
𝔼[𝑊U] = 0

𝑃 𝑊U = 10 = M
Q
, 𝑃 𝑊U = −5 = U

Q



Two Games

28

𝟎 +𝟏𝟎−𝟓

𝟎−𝟏 𝟐

𝑃 𝑊! = 2 = !
#
, 𝑃 𝑊! = −1 = "

#

𝑃 𝑊" = 10 = !
#
, 𝑃 𝑊" = −5 = "

#

2/3 1/3

1/3
2/3

Same expectation, but clearly a very different distribution. 
We want to capture the difference – New concept: Variance

Somehow, Game 2 has higher           
volatility / exposure!



Variance (Intuition, First Try)
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𝟎−𝟏 𝟐

𝑃 𝑊! = 2 = !
#
, 𝑃 𝑊! = −1 = "

#

2/3
1/3

New quantity (random variable): How far from the expectation?

𝔼[𝑊M] = 0

𝑊M − 𝔼[𝑊M]



Variance (Intuition, First Try)

30

𝟎−𝟏 𝟐

𝑃 𝑊! = 2 = !
#
, 𝑃 𝑊! = −1 = "

#

2/3
1/3

New quantity (random variable): How far from the expectation?

𝑊M − 𝔼[𝑊M]
𝔼[𝑊M − 𝔼 𝑊M ]

= 𝔼 𝑊M − 𝔼 𝔼 𝑊M

= 𝔼 𝑊M − 𝔼 𝑊M
= 0

𝔼[𝑊M] = 0



Variance (Intuition, Better Try)
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𝟎−𝟏 𝟐

𝑃 𝑊! = 2 = !
#
, 𝑃 𝑊! = −1 = "

#

2/3
1/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊M − 𝔼 𝑊M
U]

𝔼[𝑊M] = 0



Variance (Intuition, Better Try)
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𝟎−𝟏 𝟐

𝑃 𝑊! = 2 = !
#
, 𝑃 𝑊! = −1 = "

#

2/3
1/3

A better quantity (random variable): How far from the expectation?

Δ(𝑊M) = 𝑊M − 𝔼[𝑊M] U

𝑃(Δ(𝑊M) = 1) =
2
3

𝑃(Δ(𝑊M) = 4) =
1
3

𝔼[ 𝑊M − 𝔼 𝑊M
U]

=
2
3
⋅ 1 +

1
3
⋅ 4

= 2

𝔼[𝑊M] = 0



Variance (Intuition, Better Try)
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𝟎 +𝟏𝟎−𝟓

𝑃 𝑊" = 10 = !
#
, 𝑃 𝑊" = −5 = "

# 1/3
2/3

A better quantity (random variable): How far from the expectation?

Δ(𝑊U) = 𝑊U − 𝔼[𝑊U] U

ℙ(Δ(𝑊U) = 25) =
2
3

ℙ(Δ(𝑊U) = 100) =
1
3

𝔼[Δ 𝑊U ] = 𝔼[ 𝑊U − 𝔼 𝑊U
U]

=
2
3
⋅ 25 +

1
3
⋅ 100

= 50

𝔼[𝑊"] = 0



Variance
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𝔼[Δ] = 50

𝔼[Δ] = 2

We say that 𝑊U has “higher variance” than 𝑊M.  

𝑊"

𝑊!
𝟎−𝟏 𝟐

2/3
1/3

𝟎 +𝟏𝟎−𝟓

1/3
2/3



Variance
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] U = ∑$ 𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] U

Standard deviation: 𝜎 𝑋 = Var(𝑋) Recall 𝔼[𝑋] is a 
constant, not a random 
variable itself. 

Intuition: Variance (or standard deviation) is a quantity that measures, 
in expectation, how “far” the random variable is from its expectation. 



Variance – Example 1

𝑋 fair die
• 𝑃 𝑋 = 1 = ⋯ = 𝑃 𝑋 = 6 = 1/6
• 𝔼 𝑋 = 3.5

36

Var X =,
$

𝑃 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼[𝑋] U



Variance – Example 1

𝑋 fair die
• 𝑃 𝑋 = 1 = ⋯ = 𝑃 𝑋 = 6 = 1/6
• 𝔼[𝑋] = 3.5

37

Var X = ∑$ 𝑃 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼[𝑋] U

=
1
6

1 − 3.5 " + 2 − 3.5 " + 3 − 3.5 " + 4 − 3.5 " + 5 − 3.5 " + 6 − 3.5 "

=
2
6
2.5" + 1.5" + 0.5" =

2
6
25
4
+
9
4
+
1
4
=
35
12

≈ 2.91677…



Variance in Pictures

Captures how much 
“spread’ there is in a pmf

All pmfs have same 
expectation

38



Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Variance – Properties 

40

Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] U = ∑$ 𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] U

Theorem. Var 𝑋 = 𝔼[𝑋U] − 𝔼[𝑋]U

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎U ⋅ Var 𝑋

(Proof: Exercise!)



Variance

41

Theorem. Var 𝑋 = 𝔼[𝑋U] − 𝔼 𝑋 U

Proof: Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] %

= 𝔼 𝑋% − 2𝔼[𝑋] ⋅ 𝑋 + 𝔼[𝑋]%

= 𝔼 𝑋% − 2𝔼[𝑋]𝔼[𝑋] + 𝔼 𝑋 %

= 𝔼[𝑋%] − 𝔼 𝑋 % (linearity of expectation!)

Recall 𝔼[𝑋] is a constant

𝔼[𝑋"] and 𝔼[𝑋]"
are different !



Variance – Example 1

𝑋 fair die
• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = UM
R

• 𝔼[𝑋U] = ZM
R

42

Var X = 𝔼[𝑋U] − 𝔼[𝑋]U=
91
6
−

21
6

U

=
105
36

≈ 2.91677



Variance of Indicator Random Variables

Suppose that 𝑋& is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so

43

𝔼 𝑋& = 𝑃 𝐴 = 𝑝

Var 𝑋& = 𝔼 𝑋&% − 𝔼 𝑋& % =



Variance of Indicator Random Variables

Suppose that 𝑋& is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so

Since 𝑋& only takes on values 0 and 1, we always have 𝑋&% = 𝑋&
so

44

𝔼 𝑋& = 𝑃 𝐴 = 𝑝

Var 𝑋& = 𝔼 𝑋&% − 𝔼 𝑋& % = 𝔼 𝑋& − 𝔼 𝑋& % = 𝑝 − 𝑝% = 𝑝(1 − 𝑝)



In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Proof by counter-example:
• Let 𝑋 be a r.v. with pmf 𝑃 𝑋 = 1 = 𝑃 𝑋 = −1 = 1/2
– What is 𝔼[𝑋] and Var(𝑋)?

• Let 𝑌 = −𝑋
– What is 𝔼[𝑌] and Var(𝑌)?

What is Var(𝑋 + 𝑌)?

45



Brain Break



Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Random Variables and Independence

48

Definition. Two random variables 𝑋, Y are (mutually) independent if 
for all 𝑥, 𝑦,

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 ⋅ 𝑃(𝑌 = 𝑦)

Definition. The random variables 𝑋M, … , 𝑋N are (mutually) independent if 
for all 𝑥M, … , 𝑥N,

𝑃 𝑋M = 𝑥M, … , 𝑋N = 𝑥N = 𝑃 𝑋M = 𝑥M ⋯𝑃(𝑋N = 𝑥N)

Note: No need to check for all subsets, but need to check for all outcomes! 

Intuition: Knowing 𝑋 doesn’t help you guess 𝑌 and vice versa 

Comma is shorthand for AND



Example

Let 𝑋 be the number of heads in 𝑛 independent coin flips of the 
same coin. Let 𝑌 = 𝑋 mod 2 be the parity (even/odd) of 𝑋. 
Are 𝑋 and 𝑌 independent?
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Example

Make 2𝑛 independent coin flips of the same coin. 
Let 𝑋 be the number of heads in the first 𝑛 flips and 𝑌 be the 
number of heads in the last 𝑛 flips.
Are 𝑋 and 𝑌 independent?
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Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables

53



Important Facts about Independent Random Variables
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Corollary. If 𝑋M, 𝑋U, …, 𝑋N mutually independent, 

Var ,
O[M

N

𝑋O =,
O

N

Var(𝑋O)



(Not Covered) Proof of 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Proof Let 𝑥(, y(, 𝑖 = 1, 2,…be the possible values of 𝑋, 𝑌.

𝔼 𝑋 ⋅ 𝑌 =4
(

4
)

𝑥( ⋅ 𝑦) ⋅ 𝑃(𝑋 = 𝑥( ∧ 𝑌 = 𝑦))

=4
(

4
)

𝑥( ⋅ 𝑦( ⋅ 𝑃 𝑋 = 𝑥( ⋅ 𝑃(𝑌 = 𝑦))

=4
(

𝑥( ⋅ 𝑃 𝑋 = 𝑥( ⋅ 4
)

𝑦) ⋅ 𝑃(𝑌 = 𝑦))

= 𝔼 𝑋 ⋅ 𝔼[𝑌]

Note: NOT true in general; see earlier example 𝔼[X2]≠𝔼[X]2

independence



(Not Covered) Proof of Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌
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Proof

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

𝑉𝑎𝑟 𝑋 + 𝑌

= 𝔼 𝑋 + 𝑌 " − 𝔼 𝑋 + 𝑌 "

= 𝔼 𝑋" + 2𝑋𝑌 + 𝑌" − 𝔼 𝑋 + 𝔼 𝑌 "

= 𝔼 𝑋" + 2 𝔼 𝑋𝑌 + 𝔼 𝑌" − 𝔼 𝑋 " + 2 𝔼 𝑋 𝔼 𝑌 + 𝔼 𝑌 "

= 𝔼 𝑋" − 𝔼 𝑋 " + 𝔼 𝑌" − 𝔼 𝑌 " + 2 𝔼 𝑋𝑌 − 2 𝔼 𝑋 𝔼 𝑌

= 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2 𝔼 𝑋𝑌 − 2 𝔼 𝑋 𝔼 𝑌

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟 𝑌
equal by independence

linearity



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋O = 91, 𝑖
th outcome is heads

0, 𝑖th outcome is tails.
- 𝑍 = number of heads

What is 𝔼[𝑍]?    What is Var(𝑍)?
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𝑃 𝑋% = 1 = 𝑝
𝑃 𝑋% = 0 = 1 − 𝑝

𝑃 𝑍 = 𝑘 = :
; 𝑝

; 1 − 𝑝 :<;

Fact. 𝑍 = ∑O[MN 𝑋O

Note: 𝑋M, … , 𝑋N are mutually independent! [Verify it formally!]

Var 𝑍 =,
O[M

N

Var 𝑋O = 𝑛 ⋅ 𝑝(1 − 𝑝) Note Var 𝑋% = 𝑝(1 − 𝑝)


