CSE 312
Foundations of Computing II
Lecture 9: Variance and Independence of RVs

## Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Review Random Variables

Definition. A random variable (RV) for a probability space $(\Omega, P)$ is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that $X$ can take on is its range/support: $X(\Omega)$
$\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$
Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$



## Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW

| $\operatorname{Pr}(\omega)$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |



## Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $X$ is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

## Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks.

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
& \mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)
\end{aligned}
$$ All permutations equally likely.

- Let $X$ be the number of students who get their own HW

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

$$
\begin{aligned}
\mathbb{E}[X] & =3 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6} \\
& =3 \cdot \frac{1}{6}+1 \cdot \frac{3}{6}+0 \cdot \frac{2}{6} \\
& =3 \cdot P(X=x)+1 \cdot P(X=x)+0 \cdot P(X=x) \\
& =1
\end{aligned}
$$

## Recap Linearity of Expectation

Theorem. For any two random variables $X$ and $Y$ ( $X, Y$ do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Theorem. For any random variables $X$, and constants $a$ and $b$

$$
\mathbb{E}[a X+b]=a \cdot \mathbb{E}[X]+b
$$

For any event $A$, can define the indicator random variable $X$ for $A$

$$
X_{A}= \begin{cases}1 & \text { if event } A \text { occurs } \\ 0 & \text { if event } A \text { does not occur }\end{cases}
$$

$$
\begin{aligned}
& P\left(X_{A}=1\right)=P(A) \\
& P\left(X_{A}=0\right)=1-P(A)
\end{aligned}
$$

## Example - Coin Tosses - The brute force method

We flip $n$ coins, each one heads with probability $p$, $Z$ is the number of heads, what is $\mathbb{E}[Z]$ ?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

Can we solve it more

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$ elegantly, please?

$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p$

## Computing complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each $X_{i}$

Often, $X_{i}$ are indicator (o/1) random variables.

## Example - Coin Tosses

We flip $n$ coins, each toss independent, comes up heads with probability $p$ $Z$ is the number of heads, what is $\mathbb{E}[Z]$ ?

$$
X_{i}=\left\{\begin{array}{l}
1, i^{\text {th }} \text { coin flip is heads } \\
0, i^{\text {th }} \text { coin flip is tails. }
\end{array}\right.
$$

Fact. $Z=X_{1}+\cdots+X_{n}$

| Outcomes | $X_{1}$ | $X_{2}$ | $X_{3}$ | $Z$ |
| :--- | :---: | :---: | :---: | :---: |
| TTT | 0 | 0 | 0 | 0 |
| TTH | 0 | 0 | 1 | 1 |
| THT | 0 | 1 | 0 | 1 |
| THH | 0 | 1 | 1 | 2 |
| HTT | 1 | 0 | 0 | 1 |
| HTH | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | 2 |
| HHT | 1 | 1 | 0 | 2 |
| HHH | 1 | 1 | 1 | 3 |

## Example - Coin Tosses

We flip $n$ coins, each toss independent, comes up heads with probability $p$ $Z$ is the number of heads, what is $\mathbb{E}[Z]$ ?

- $X_{i}= \begin{cases}1, & i^{\text {th }} \text { coin flip is heads } \\ 0, & i^{\text {th }} \text { coin flip is tails. }\end{cases}$

Fact. $Z=X_{1}+\cdots+X_{n}$

Linearity of Expectation:

$$
\mathbb{E}[Z]=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \cdot p
$$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left[X_{i}\right]=p \cdot 1+(1-p) \cdot 0=p
$$



## Example: Returning Homeworks

- Class with $n$ students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW What is $\mathbb{E}[X]$ ?

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

## Example: Returning Homeworks

- Class with $n$ students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW

What is $\mathbb{E}[X]$ ? Use linearity of expectation!

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

Decompose: Find the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

Conquer: Compute the expectation of each $X_{i}$ and sum!

## Example: Returning Homeworks

- Class with $n$ students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW What is $\mathbb{E}[X]$ ? Use linearity of expectation!

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

## Example: Returning Homeworks

- Class with $n$ students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW What is $\mathbb{E}[X]$ ? Use linearity of expectation!

Decompose: What is $X_{i}$ ?

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

$X_{i}=1$ iff $i^{\text {th }}$ student gets own HW back
LOE: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]$
Conquer: $\mathbb{E}\left[X_{i}\right]=\frac{1}{n}$
Therefore, $\mathbb{E}[X]=n \cdot \frac{1}{n}=1$

## Pairs with the same birthday

- In a class of $m$ students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays; diff people independent)?


## Pairs with the same birthday

- In a class of $m$ students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students $(i, j)$ for $i \neq j$

$$
X_{i j}=1 \text { iff students } i \text { and } j \text { have the same birthday }
$$

LOE: $\binom{m}{2}$ indicator variables $X_{i j}$
Conquer: $\mathbb{E}\left[X_{i j}\right]=\frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365}=\frac{m(m-1)}{730}$ pairs

## Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Linearity of Expectation - Even stronger

Theorem. For any random variables $X_{1}, \ldots, X_{n}$, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

## Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$

How DO we compute $\mathbb{E}[g(X)]$ ?

## Expected Value of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \mathrm{X}(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician

## Example: Expectation of $g(X)$

Suppose we rolled a fair, 6-sided die in a game.
You will win the cube of the number rolled in dollars, times 10. Let $X$ be the result of the dice roll.
What is your expected winnings?
$\mathbb{E}\left[10 X^{3}\right]=$

## Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Which game would you rather play?

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability 2/3.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
\end{aligned}
$$

## Which game would you rather play?

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability 2/3.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability $2 / 3$.

$$
W_{2}=\text { payoff in a round of Game } 2
$$

$$
P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}
$$

$$
\mathbb{E}\left[W_{2}\right]=0
$$

## Two Games

Somehow, Game 2 has higher volatility / exposure!

$P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}$
$2 / 3$


Same expectation, but clearly a very different distribution.
We want to capture the difference - New concept: Variance

## Variance (Intuition, First Try)



New quantity (random variable): How far from the expectation?

$$
W_{1}-\mathbb{E}\left[W_{1}\right]
$$

## Variance (Intuition, First Try)



New quantity (random variable): How far from the expectation?

$$
W_{1}-\mathbb{E}\left[W_{1}\right]
$$

$$
\begin{aligned}
\mathbb{E}\left[W_{1}\right. & \left.-\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[\mathbb{E}\left[W_{1}\right]\right] \\
\quad & =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[W_{1}\right] \\
& =0
\end{aligned}
$$

## Variance (Intuition, Better Try)

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$
A better quantity (random variable): How far from the expectation?

$$
\mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right]
$$

## Variance (Intuition, Better Try)



A better quantity (random variable): How far from the expectation?

$$
\Delta\left(W_{1}\right)=\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}
$$

$$
P\left(\Delta\left(W_{1}\right)=1\right)=\frac{2}{3}
$$

$$
P\left(\Delta\left(W_{1}\right)=4\right)=\frac{1}{3}
$$

$$
\begin{aligned}
& \mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& \quad=\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& \quad=2
\end{aligned}
$$

## Variance (Intuition, Better Try)



A better quantity (random variable): How far from the expectation?

$$
\begin{array}{rlrl}
\Delta\left(W_{2}\right)=\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2} & \mathbb{E}\left[\Delta\left(W_{2}\right)\right] & =\mathbb{E}\left[\left(W_{2}-\mathbb{E}\left[W_{2}\right]\right)^{2}\right] \\
\mathbb{P}\left(\Delta\left(W_{2}\right)=25\right)=\frac{2}{3} & & =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
& & =50
\end{array}
$$



We say that $W_{2}$ has "higher variance" than $W_{1}$.

## Variance

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

$$
\begin{aligned}
& \text { Recall } \mathbb{E}[X] \text { is a } \\
& \text { constant, not a random } \\
& \text { variable itself. }
\end{aligned}
$$

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

## Variance - Example 1

$X$ fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$


## Variance - Example 1

$X$ fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$


## Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation


$$
\sigma^{2}=10
$$



$$
\sigma^{2}=15
$$



$$
\sigma^{2}=19.7
$$



## Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$
(Proof: Exercise!)

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

## Variance

## Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2}
\end{aligned}
$$

$$
=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \begin{aligned}
& \text { (linearity of }
\end{aligned}
$$

are different !

## Variance - Example 1

$X$ fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}[X]=\frac{21}{6}$
- $\mathbb{E}\left[X^{2}\right]=\frac{91}{6}$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$


## Variance of Indicator Random Variables

Suppose that $X_{A}$ is an indicator RV for event $A$ with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

$\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=$

## Variance of Indicator Random Variables

Suppose that $X_{A}$ is an indicator RV for event $A$ with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since $X_{A}$ only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so

$$
\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=\mathbb{E}\left[X_{A}\right]-\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}=p(1-p)
$$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof by counter-example:

- Let $X$ be a r.v. with $\operatorname{pmf} P(X=1)=P(X=-1)=1 / 2$
- What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$ ?
- Let $Y=-X$
- What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$ ?

What is $\operatorname{Var}(X+Y)$ ?


## Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Random Variables and Independence

Definition. Two random variables $X, Y$ are (mutually) independent if for all $x, y$,

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing $X$ doesn't help you guess $Y$ and vice versa

Definition. The random variables $X_{1}, \ldots, X_{n}$ are (mutually) independent if for all $x_{1}, \ldots, x_{n}$,

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all outcomes!

## Example

Let $X$ be the number of heads in $n$ independent coin flips of the same coin. Let $Y=X \bmod 2$ be the parity (even/odd) of $X$. Are $X$ and $Y$ independent?

## Example

Make $2 n$ independent coin flips of the same coin.
Let $X$ be the number of heads in the first $n$ flips and $Y$ be the number of heads in the last $n$ flips.
Are $X$ and $Y$ independent?

## Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables


## Important Facts about Independent Random Variables

Theorem. If $X, Y$ independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If $X, Y$ independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

## (Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If $X, Y$ independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

```
Proof
\[
\begin{aligned}
& \text { Let } x_{i}, y_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \begin{aligned}
\mathbb{E}[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
\end{aligned}
\]
Note: NOT true in general; see earlier example \(\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}\)
```


## (Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If $X, Y$ independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { equal by independence }
\end{aligned}
$$

## Example - Coin Tosses

We flip $n$ independent coins, each one heads with probability $p$

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$ ? What is $\operatorname{Var}(Z)$ ?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: $X_{1}, \ldots, X_{n}$ are mutually independent! [Verify it formally!]
$\square \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad$ Note $\operatorname{Var}\left(X_{i}\right)=p(1-p)$

