CSE 312 Foundations of Computing II

Lecture 9: Variance and Independence of RVs

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathbb{RV} X: \Omega \to \mathbb{R}$, the **expectation** or **expected value** or **mean** of *X* is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	X(w)
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$
$$= 3 \cdot \frac{1}{6} + 1 \cdot \frac{3}{6} + 0 \cdot \frac{2}{6}$$
$$= 3 \cdot P(X = x) + 1 \cdot P(X = x) + 0 \cdot P(X = x)$$
$$= 1$$

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$
$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

h

Recap Linearity of Expectation

Theorem. For any two random variables *X* and *Y* (*X*, *Y* do not need to be independent)

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

Theorem. For any random variables *X*, and constants *a* and *b*

 $\mathbb{E}[aX+b] = a \cdot \mathbb{E}[X] + b.$

For any event A, can define the indicator random variable X for A

 $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases}$

 $P(X_A = 1) = P(A)$ $P(X_A = 0) = 1 - P(A)$

Example – Coin Tosses – The brute force method

We flip n coins, each one heads with probability p, Z is the number of heads, what is $\mathbb{E}[Z]$?

 $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot {\binom{n}{k}} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$ $= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

Computing complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

• <u>LOE</u>: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

• <u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Example – Coin Tosses

We flip n coins, each toss independent, comes up heads with probability pZ is the number of heads, what is $\mathbb{E}[Z]$?

 $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Outcomes	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Ζ
TTT	0	0	0	0
ТТН	0	0	1	1
THT	0	1	0	1
ТНН	0	1	1	2
HTT	1	0	0	1
нтн	1	0	1	2
ННТ	1	1	0	2
ннн	1	1	1	3

Fact.
$$Z = X_1 + \dots + X_n$$

Example – Coin Tosses

We flip *n* coins, each toss independent, comes up heads with probability *p Z* is the number of heads, what is $\mathbb{E}[Z]$?

- $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$

 $P(X_i = 1) = p$ $P(X_i = 0) = 1 - p$ $\mathbb{E}[X_i] = p \cdot 1 + (1 - p) \cdot 0 = p$

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

13

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose:</u> Find the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \dots + X_n$$

LOE: Apply linearity of expectation. $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

Conquer: Compute the expectation of each X_i and sum!

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose: What is X_i?

 $X_i = 1$ iff i^{th} student gets own HW back LOE: $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$ Conquer: $\mathbb{E}[X_i] = \frac{1}{n}$ Therefore, $\mathbb{E}[X] = n \cdot \frac{1}{n} = 1$

16

Pairs with the same birthday

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays; diff people independent)?

Pairs with the same birthday

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve **pairs** of students (i, j) for $i \neq j$ $X_{ij} = 1$ iff students *i* and *j* have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \cdots + a_nX_n] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n].$

Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$

E.g., $X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of g(X) is

$$\mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}(\Omega)} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$$

Also known as LOTUS: "Law of the unconscious statistician

(nothing special going on in the discrete case)

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win the cube of the number rolled in dollars, times 10. Let *X* be the result of the dice roll. What is your expected winnings?

 $\mathbb{E}[10X^3] =$

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $P(W_1 = 2) = \frac{1}{3}$, $P(W_1 = -1) = \frac{2}{3}$

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$W_1 = \text{payoff in a round of Game 1}$$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$
 $\mathbb{E}[W_1] = 0$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

$$W_2 = \text{payoff in a round of Game 2}$$

 $P(W_2 = 10) = \frac{1}{3}, P(W_2 = -5) = \frac{2}{3}$
 $\mathbb{E}[W_2] = 0$

Same expectation, but clearly a very different distribution. We want to capture the difference – New concept: Variance

28

New quantity (random variable): How far from the expectation? $W_1 - \mathbb{E}[W_1]$

New quantity (random variable): How far from the expectation?

 $W_{1} - \mathbb{E}[W_{1}]$ $\mathbb{E}[W_{1} - \mathbb{E}[W_{1}]]$ $= \mathbb{E}[W_{1}] - \mathbb{E}[\mathbb{E}[W_{1}]]$ $= \mathbb{E}[W_{1}] - \mathbb{E}[W_{1}]$ = 0

30

A better quantity (random variable): How far from the expectation?

 $\Delta(W_2) = (W_2 - \mathbb{E}[W_2])^2$ $\mathbb{P}(\Delta(W_2) = 25) = \frac{2}{3}$ $\mathbb{P}(\Delta(W_2) = 100) = \frac{1}{3}$

$$\mathbb{E}[\Delta(W_2)] = \mathbb{E}[(W_2 - \mathbb{E}[W_2])^2]$$
$$= \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$
$$= 50$$

33

We say that W_2 has "higher variance" than W_1 .

Variance

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

$$Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^2$$

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

 $Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^{2}$ = $\frac{1}{6} [(1 - 3.5)^{2} + (2 - 3.5)^{2} + (3 - 3.5)^{2} + (4 - 3.5)^{2} + (5 - 3.5)^{2} + (6 - 3.5)^{2}]$ = $\frac{2}{6} [2.5^{2} + 1.5^{2} + 0.5^{2}] = \frac{2}{6} [\frac{25}{4} + \frac{9}{4} + \frac{1}{4}] = \frac{35}{12} \approx 2.91677 \dots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

Definition. The variance of a (discrete) RV X is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

(Proof: Exercise!)

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Variance

Theorem.
$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Proof: $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ $= \mathbb{E}[X^2 - 2\mathbb{E}[X] \cdot X + \mathbb{E}[X]^2]$ $= \mathbb{E}(X^2) - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2$ (linearity of expectation!) $\mathbb{E}[X^2] \text{ and } \mathbb{E}[X]^2$ are different !

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}[X] = \frac{21}{6}$
- $\mathbb{E}[X^2] = \frac{91}{6}$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so $\mathbb{E}[X_A] = P(A) = p$

$\operatorname{Var}(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 =$

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so $\mathbb{E}[X_A] = P(A) = p$

Since X_A only takes on values 0 and 1, we always have $X_A^2 = X_A$ so

 $Var(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1 - p)$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Proof by counter-example:

- Let *X* be a r.v. with pmf *P*(*X* = 1) = *P*(*X* = −1) = 1/2 – What is E[*X*] and Var(*X*)?
- Let Y = -X

– What is $\mathbb{E}[Y]$ and Var(Y)?

What is Var(X + Y)?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables 🗲
- Properties of Independent Random Variables

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all *x*, *y*,

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are **(mutually) independent** if for all $x_1, ..., x_n$,

$$P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y = X \mod 2$ be the parity (even/odd) of X. Are X and Y independent?

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .

$$\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$$
independence
$$= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$$

$$= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

55

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var(X + Y)$$

$$= \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + \mathbb{E}[Y])^{2}$$

$$= \mathbb{E}[X^{2}] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^{2}] - (\mathbb{E}[X]^{2} + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^{2})$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2} + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y)$$
equal by independence

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

-
$$X_i = \begin{cases} 1, \ i^{\text{th}} \text{ outcome is heads} \\ 0, \ i^{\text{th}} \text{ outcome is tails.} \end{cases}$$

- $Z = \text{number of heads}$
What is $\mathbb{E}[Z]$? What is $\text{Var}(Z)$?
P($Z = k$) = $\binom{n}{k}p^k(1-p)^{n-k}$
Note: X_1, \dots, X_n are mutually independent! [Verify it formally!]
Var(Z) = $\sum_{i=1}^{n} \text{Var}(X_i) = n \cdot p(1-p)$
Note $\text{Var}(X_i) = p(1-p)$