CSE 312 Foundations of Computing II

Linearity of expectation LOTUS Lecture 9: Variance and Independence of RVS

Aronymons questions: WWW.slido.com/3296240

1

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1 <mark>, 3</mark>	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of X is $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$ or equivalently $\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

- Class with 3 students, randomly hand back homeworks. $\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$ All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$

$$\implies = 3 \cdot \frac{1}{6} + 1 \cdot \frac{3}{6} + 0 \cdot \frac{2}{6}$$

$$= 3 \cdot P(X = 3) + 1 \cdot P(X = 1) + 0 \cdot P(X = 2)$$

$$= 1$$

 $\blacksquare [X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$

$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$

Recap Linearity of Expectation

 $E(X) = \tilde{P}(i^{m} \beta e_{p,s} H) =$

Example – Coin Tosses – The brute force method

We flip n coins, each one heads with probability p, Z is the number of heads, what is $\mathbb{E}[Z]$? $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z=k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$ $=\sum_{k=1}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$ $= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$ $= np \sum_{k=1}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$ $= np \sum {\binom{n-1}{k}} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

8

Can we solve it more elegantly, please?

X: # heads in nindep tasses

Computing complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

• LOE: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

<u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Example – Coin Tosses We flip *n* coins, each toss independent, comes up heads with probability *p Z* is the number of heads, what is $\mathbb{E}[Z]$? $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$ **Fact.** $Z = X_1 + \dots + X_n$

Outcomes

$$X_1$$
 X_2
 X_3
 Z

 TTT
 0
 0
 0
 0

 TTH
 0
 0
 1
 1

 THH
 0
 1
 1
 1

 THH
 0
 1
 1
 2

 HTT
 1
 0
 0
 1

 HHH
 1
 1
 0
 2

 HHH
 1
 1
 1
 3
 10

$$E(z) = np$$

Example – Coin Tosses

We flip *n* coins, each toss independent, comes up heads with probability *p Z* is the number of heads, what is $\mathbb{E}[Z]$?

- $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$

 $P(X_i = 1) = p$ $P(X_i = 0) = 1 - p$ $\mathbb{E}[X_i]$

$$\mathbb{E}[X_i] = p \cdot 1 + (1-p) \cdot 0 = p$$

- Class with *n* students, randomly hand back homeworks.
 equally likely.
- Let *X* be the number of students who get their own HW

V	Vhat	is $\mathbb{E}[X]$?	[1 desconi get	
Č	H		X:= } y their on hw b	ack
Pr(w)	ω	X(w)		
1/6	<mark>1, 2,</mark> 3	3		3
1/6	<mark>1</mark> , 3, 2	1		
1/6	2, 1, 3	1	│ ∨ < ∨ ·	
1/6	2, 3, 1	0		
1/6	3, 1, 2	0	ì=1	
1/6	3 <mark>,2,</mark> 1	1	- $ = (x) $ $ = E(x)$	
	-		E(X) = E(X)	
E(X)= P	(personi got this on hu back) = Zin	

All permutations

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	X(w)
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose:</u> Find the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \dots + X_n$$

LOE: Apply linearity of expectation. $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

<u>Conquer</u>: Compute the expectation of each *X_i* and sum!

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose: What is X_i?

 $X_i = 1$ iff i^{th} student gets own HW back LOE: $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$ Conquer: $\mathbb{E}[X_i] = \frac{1}{n}$ Therefore, $\mathbb{E}[X] = n \cdot \frac{1}{n} = 1$

16

Pairs with the same birthday

 In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays; diff people independent)?

m- (

people that have X: # pairs g A,D,E Same BF AE DE 365 E(person; & person j have save bday ٥.٣. Pribonias,

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve **pairs** of students (i, j) for $i \neq j$ $X_{ij} = 1$ iff students *i* and *j* have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Linearity of Expectation – Even stronger

Theorem. For any random variables X_1, \ldots, X_n , and real numbers $a_1, \ldots, a_n \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \dots + a_nX_n] = a_1\mathbb{E}[X_1] + \dots + a_n\mathbb{E}[X_n].$ Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$ $Z = X \cdot Y$ $Z(w) = X(w) \cdot Y(w)$ 6 21

a X+b

E(X) = O

 X^{d} is 1 where 1 $E(X^{d})$:

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$

 $F(g(X)) = g(x_1) F(X = x_1) + g(x_2) F(X = x_2)$

Expected Value of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of g(X) is $\implies \mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$ or equivalently $\mathbb{E}[g(X)] = \sum_{x \in X(\Omega)} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$

Also known as **LOTUS**: "Law of the unconscious statistician

(nothing special going on in the discrete case)

$W = 10 X^{3}$ **Example: Expectation of** q(X)Suppose we rolled a fair, 6-sided die in a game. You will win the cube of the number rolled in dollars, times 10. Let X be the result of the dice roll. **q** (?) What is your expected winnings? $E(\omega)$ - $\mathbb{E}[10X^3] =$ $100^{3}P(X=0) - 10.1^{3}P(X=1) + 10.2^{3}P(X=2)$ 1063 P(x=6) 24