CSE 312

Foundations of Computing II
Linearity of expectation, LoTus
Lecture 9: VZeof DVS

Anonymous questions:
www. slido.com/3296240

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$
$\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$
Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

$$
\begin{aligned}
& \longrightarrow \mathbb{C}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
& \Longrightarrow \mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)
\end{aligned}
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\omega)$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$$
\begin{aligned}
\mathbb{E}[X] & =\frac{3 \cdot \frac{1}{6}+\frac{1}{1} \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}}{3} \\
\rightarrow & =3 \cdot \frac{1}{6}+1 \cdot \frac{3}{6}+0 \cdot \frac{2}{6} \\
& =3 \cdot P(X=3)+1 \cdot P(X=1)+0 \cdot P(X=0 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
E\left(X_{1}+X_{2}+\cdots+X_{n}\right) & =E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right) \\
\text { Recap Linearity of Expectation } & =\sum_{i=1}^{n} E\left(X_{i}\right)
\end{aligned}
$$

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

$$
\begin{aligned}
& a=3 \\
& b=17
\end{aligned}
$$

Theorem. For any random variables X, and constants a and b

$$
\geqslant
$$

$$
E(3 x+17)
$$

$$
=3 E(x)+17
$$

For any event A, can define the indicator random variable X for A

$$
\begin{aligned}
& X_{A}= \begin{cases}1 & \text { if event } A \text { occurs } \\
0 & \text { if event } A \text { does not occur }\end{cases} \\
& \begin{array}{l}
P\left(X_{A}=1\right) \\
P\left(X_{A}=0\right)
\end{array}=1-P(A)
\end{aligned}
$$

$E\left(X_{i}\right)=P($ infepis $H)=P$

Example - Coin Tosses - The brute force method

We flip n coins, each one heads with probability p, Z is the number of heads what is $\mathbb{E}[Z]$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

Can we solve it more

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$ elegantly, please?

$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p$

X : \# heads in n irdep tosses
 Computing complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Example - Coin Tosses coin fro
We flip n coins, each toss independent, comes up heads with probability p Z is the number of heads, what is $\mathbb{E}[Z]$?
$X_{i}= \begin{cases}1, & i^{\text {th }} \text { coin flip is heads } \\ 0, & i^{\text {th }} \text { coin flip is tails. }\end{cases}$
Fact. $Z=X_{1}+\cdots+X_{n}$

$$
n=3
$$

$$
E(Z)=E\left(x_{1}\right)+E\left(x_{2}\right)+\cdots+E\left(x_{n}\right)
$$

$$
\underline{E\left(x_{i}\right)}=P(\text { inseppis } H)=P
$$

$$
E(2)=n p
$$

Example - Coin Tosses

We flip n coins, each toss independent, comes up heads with probability p Z is the number of heads, what is $\mathbb{E}[Z]$?

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { coin flip is heads } \\ 0, i^{\text {th }} \text { coin flip is tails. }\end{array}\right.$

Fact. $Z=X_{1}+\cdots+X_{n}$

Linearity of Expectation:

$$
\mathbb{E}[Z]=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \cdot p
$$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left[X_{i}\right]=p \cdot 1+(1-p) \cdot 0=p
$$

$$
\begin{aligned}
& P(E)=\frac{1 E}{n!} \frac{n-\mu}{n!1 \mid}=\frac{1}{n} \\
& \text { Example: Returning Homework } \\
& \text { - Class with } n \text { students, randomly hand back homework. All permutations } \\
& \text { equally likely. } \\
& \text { - Let } X \text { be the number of students who get their own HW } \\
& \text { What is } \mathbb{E}[X] \text { ? }
\end{aligned}
$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Decompose: Find the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

LOE: Apply linearity of expectation.

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

Conquer: Compute the expectation of each X_{i} and sum!

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!
Decompose: What is X_{i} ?

$\operatorname{Pr}(\omega)$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

$X_{i}=1$ iff $i^{\text {th }}$ student gets own HW back
LOE: $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]$
Conquer: $\mathbb{E}\left[X_{i}\right]=\frac{1}{n}$
Therefore, $\mathbb{E}[X]=n \cdot \frac{1}{n}=1$

Pairs with the same birthday

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays; diff people independent)?
X \# pray peg peat tat the

$X_{i j}=\left\{\begin{array}{l}1 \quad \text { parson \& parson; have are boy } \\ 0 \\ \text { ow. }\end{array}\right.$

$$
X=\sum_{\substack{\text { alt } \\ \text { undid } \\ \text { paisidna is }}} X_{i j}
$$

$E\left(X_{i}\right)=P\left(i s_{i}\right.$ there $)$
${ }^{235} \operatorname{Pr}($ bat ri $i 8 j$,

Pairs with the same birthday

$$
\begin{aligned}
& \sum_{k=1}^{361} P\left(i_{\text {bog }}\right) P\left(j_{j+5} k_{k}\right) \\
= & \sum_{k=1}^{365} \frac{1}{365} \cdot \frac{1}{365}=\frac{1}{365}
\end{aligned}
$$

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (i, j) for $i \neq j$

$$
X_{i j}=1 \text { iff students } i \text { and } j \text { have the same birthday }
$$

LOE: $\binom{m}{2}$ indicator variables $X_{i j}$
Conquer: $\mathbb{E}\left[X_{i j}\right]=\frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365}=\frac{m(m-1)}{730}$ pairs

Agenda

- Recap
- Linearity of expectation
- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right] .
$$

$$
g\left(x_{1}, \ldots x_{n}\right)
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$

$$
\begin{aligned}
Z & =X \cdot Y \\
Z(\omega) & =X(\omega) \cdot Y(\omega)
\end{aligned}
$$

Linearity is special!
In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

0 otrenwisa
Then: $\mathbb{E}\left[X^{2}\right] \neq \underset{\pi}{\mathbb{E}[X]^{2}}$
How DO we compute $\mathbb{E}[g(X)]$?

$$
E(x)=0
$$

x^{2} is 1 wituprob 1

$$
E\left(x^{2}\right)=1
$$

$g(x)$

Expected Value of $g(X)$

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\Rightarrow \mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in \mathrm{X}(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician
(nothing special going on in the discrete case)

Example: Expectation of $g(X)$

$$
\omega=10 \underline{x}^{3}
$$

Suppose we rolled a fair, 6 -sided die in a game.
You will win the cube of the number rolled in dollars, times 10.
Let X be the result of the dice roll.
What is your expected winnings?

$$
\begin{aligned}
& =\underline{E}\left[\underline{10 X^{3}}\right]=\sum_{i=1}^{6} 10 i^{3} P(X=i) \\
& 100^{3} P(x=0)+10 \cdot 1^{3} P(x=1)+10.2^{3} P(x=2) \\
& \cdots \quad 10.6^{3} P(x=6)
\end{aligned}
$$

