
CSE 312

Foundations of Computing II
Lecture 8:  More on random variables; expectation
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Last Class:
• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function 

(CDF)
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Today:
• Recap
• Expectation
• Linearity of Expectation
• Indicator Random Variables

This Photo by Unknown Author is licensed under CC BY-SA

Kandinsky

https://commons.wikimedia.org/wiki/File:Vertiefte_Regung_(Deepened_Impulse)_by_Wassily_Kandinsky,_1928.jpg
https://creativecommons.org/licenses/by-sa/3.0/


Review Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, 𝑃) is a function 𝑋: Ω → ℝ.

The set of values that 𝑋 can take on is its range/support: 𝑋(Ω) or Ω!
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Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3
1/6 1,	3,	2
1/6 2,	1,	3
1/6 2,	3,	1
1/6 3,	1,	2
1/6 3,	2,	1



Review Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, 𝑃) is a function 𝑋: Ω → ℝ.

The set of values that 𝑋 can take on is its range/support: 𝑿(𝛀) or 𝛀𝑿
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Ω

𝑋 𝜔 = 𝑥.

𝑋 𝜔 = 𝑥/

𝑋 𝜔 = 𝑥0

𝑋 𝜔 = 𝑥1
𝑋 = 𝑥2 = 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥2}

Random variables partition
the sample space.

Σ3∈5(6)𝑃 𝑋 = 𝑥 = 1



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW

𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3 3
1/6 1,	3,	2 1
1/6 2,	1,	3 1
1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 3,	2,	1 1

Ω 2,	3,	1
2,	3,	1
3,	1,	2
2,	3,	1
1,	3,	2
2,	1,	3
3,	1,	2

2,	3,	1
1,	2,	3

𝑿 𝝎 = 𝟎

𝑿 𝝎 = 𝟏

𝑿 𝝎 = 𝟑



Review PMF and CDF
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For a RV 𝑋: Ω → ℝ, the probability mass function (pmf) of 𝑋
specifies, for any real number 𝑥, the probability that 𝑋 = 𝑥

𝑝! 𝑥 = 𝑃 𝑋 = 𝑥 = 𝑃( 𝜔 ∈ Ω 𝑋(𝜔) = 𝑥})

For a RV 𝑋: Ω → ℝ, the cumulative distribution function (cdf) of 𝑋
specifies, for any real number 𝑥, the probability that 𝑋 ≤ 𝑥

𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥

Definitions:

∑3∈6! 𝑝5 𝑥 = 1



Example – Two fair independent coin flips
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𝑋 = number of heads

-1 0 1 2 3 -1 0 1 2 3

1/4

1/2

3/4

1

𝑝! 𝐹!

Probability Mass Function
PMF

Cumulative Distribution Function
CDF



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks. 
All permutations equally likely.
• Let 𝑿 be the number of students who get their own HW
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3 3

1/6 1,	3,	2 1

1/6 2,	1,	3 1

1/6 2,	3,	1 0

1/6 3,	1,	2 0

1/6 3,	2,	1 1

-1 0 1 2 3 -1 0 1 2 3
0

1/2

1

𝑝! 𝐹!
Probability Mass Fn
PMF

Cumulative Distribution Fn
CDF

𝑷 𝑿 = 𝟎 = 𝟏/𝟑
𝑷 𝑿 = 𝟏 = 𝟏/𝟐
𝑷 𝑿 = 𝟑 = 𝟏/𝟔



Example – Number of Heads
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We flip 𝑛 coins, independently, each heads with probability 𝑝

𝑋 = # of heads

𝑝! 𝑘 = 𝑃 𝑋 = 𝑘 =

Ω = {HH⋯HH, HH⋯HT, HH⋯TH,… , TT⋯TT}



Example – Number of Heads

13

We flip 𝑛 coins, independently, each heads with probability 𝑝

𝑋 = # of heads

𝑝! 𝑘 = 𝑃 𝑋 = 𝑘 =
𝑛
𝑘

⋅ 𝑝# ⋅ 1 − 𝑝 $%#

Ω = {HH⋯HH, HH⋯HT, HH⋯TH,… , TT⋯TT}

# of sequences with 𝑘 heads Prob of sequence w/ 𝑘 heads 



Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
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Expectation (Idea)
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Example. Toss a coin 20 times independently with probability ¼ of 
coming up heads on each toss.

𝑋 = number of heads

How many heads do you expect to see? 

What if you toss it independently n times and it comes up heads 
with probability p each time?



Review Expected Value of a Random Variable

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑋 is   

𝔼 𝑋 = ?
&∈(

𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= ?
)∈(!

𝑥 ⋅ 𝑝!(𝑥)𝔼 𝑋 = ?
)∈*(()

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Expectation
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-1 0 1 2 3

1/4

1/2

3/4

1
𝑝!

Example. Two fair coin flips
Ω = TT, HT, TH, HH

𝑋 = number of heads

𝔼 𝑋 = 0 ⋅ 𝑝5 0 + 1 ⋅ 𝑝5 1 + 2 ⋅ 𝑝5(2)

0

= 0 ⋅
1
4
+ 1 ⋅

1
2
+ 2 ⋅

1
4
=
1
2
+
1
2
= 1

What is 𝔼[𝑋]?

𝔼 𝑋 = 0
!∈#

𝑋 𝜔 ⋅ 𝑃(𝜔)

𝔼 𝑋 = 0
$∈%(#)

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
• What is 𝔼 𝑋 ?
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 1,	3,	2 1
1/6 3,	2,	1 1
1/6 2,	1,	3 1
1/6 1,	2,	3 3

𝔼 𝑋 = 0
!∈#

𝑋 𝜔 ⋅ 𝑃(𝜔)

𝔼 𝑋 = 0
$∈%(#)

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3 3
1/6 1,	3,	2 1
1/6 2,	1,	3 1
1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 3,	2,	1 1

𝔼 𝑋 = 3 ⋅
1
6
+ 1 ⋅

1
6
+ 1 ⋅

1
6
+ 0 ⋅

1
6
+ 0 ⋅

1
6
+ 1 ⋅

1
6

= 6 ⋅
1
6
= 1



Example – Flipping a biased coin until you see heads

• Biased coin, each flip indep:
𝑃 𝐻 = 𝑞 > 0
𝑃(𝑇) = 1 − 𝑞

• 𝑍 = # of coin flips until first head
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𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞 …

𝔼 𝑍 =

𝑃(𝑍 = 𝑖) =



Example – Flipping a biased coin until you see heads

• Biased coin, each flip indep:
𝑃 𝐻 = 𝑞 > 0
𝑃(𝑇) = 1 − 𝑞

• 𝑍 = # of coin flips until first head
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𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞 …

1 − 𝑞 5𝑞
1 − 𝑞 6𝑞

1 − 𝑞 𝑞
𝑞

𝔼 𝑍 =?
789

:

𝑖 ⋅ 𝑃 𝑍 = 𝑖 =?
789

:

𝑖 ⋅ 𝑞 1 − 𝑞 7%9
Converges, so 𝔼 𝑍 is finite

Can calculate this directly but…

𝑃(𝑍 = 𝑖) = 𝑞 1 − 𝑞 7%9



Example – Flipping a biased coin until you see heads

• Biased coin, each flip indep:
𝑃 𝐻 = 𝑞 > 0
𝑃(𝑇) = 1 − 𝑞

• 𝑍 = # of coin flips until first head
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𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞 …

1 − 𝑞 5𝑞
1 − 𝑞 6𝑞

1 − 𝑞 𝑞
𝑞

𝔼 𝑍 =

Another view:  If you get heads first try you get 𝑍 = 1; 
If you get tails you have used one try and have the same experiment left



Example – Flipping a biased coin until you see heads

• Biased coin:
𝑃 𝐻 = 𝑞 > 0
𝑃(𝑇) = 1 − 𝑞

• 𝑍 = # of coin flips until first head

23

𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞
𝑞

1 − 𝑞 …

1 − 𝑞 5𝑞
1 − 𝑞 6𝑞

1 − 𝑞 𝑞
𝑞

𝔼 𝑍 = 𝑞 ⋅ 1 + (1 − 𝑞)(1 + 𝔼 𝑍 )

Another view:  If you get heads first try you get 𝑍 = 1; 
If you get tails you have used one try and have the same experiment left

Solving gives    𝑞 ⋅ 𝔼 𝑍 = 𝑞 + 1 − 𝑞 = 1 Implies 𝔼 𝑍 = 1/𝑞



Example – Coin Tosses

We flip 𝑛 coins, each toss independent, probability 𝑝 of coming up 
heads.
𝑍 is the number of heads, what is 𝔼(𝑍)?   

24
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𝔼 𝑍 = 0
()*

+

𝑘 ⋅ 𝑃(𝑍 = 𝑘)

Can we solve it more 
elegantly, please?

This Photo by Unknown Author is 
licensed under CC BY-NC

Example – Coin Tosses
We flip 𝑛 coins, each toss independent; heads with probability 𝑝,
𝑍 is the number of heads, what is 𝔼[𝑍]?   

= 0
()*

+

𝑘 ⋅
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝( 1 − 𝑝 +,( = 0

()-

+
𝑛!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝( 1 − 𝑝 +,(

= 𝑛𝑝0
()-

+
(𝑛 − 1)!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝(,- 1 − 𝑝 +,(

= 𝑛𝑝0
()*

+,-
(𝑛 − 1)!

𝑘! 𝑛 − 1 − 𝑘 ! 𝑝
( 1 − 𝑝 (+,-),(

= 𝑛𝑝0
()*

+,-
𝑛 − 1
𝑘 𝑝( 1 − 𝑝 (+,-),( = 𝑛𝑝 𝑝 + 1 − 𝑝 +,- = 𝑛𝑝 ⋅ 1 = 𝑛𝑝

= 0
()*

+

𝑘 ⋅
𝑛
𝑘 𝑝( 1 − 𝑝 +,(

http://www.pngall.com/baby-png
https://creativecommons.org/licenses/by-nc/3.0/


Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
• Linearity of Expectation
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Linearity of Expectation
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Theorem. For any two random variables 𝑋 and 𝑌
(𝑛𝑜 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑎𝑡𝑠𝑜𝑒𝑣𝑒𝑟 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   

Or, more generally: For any random variables 𝑋9, … , 𝑋$,

𝔼[𝑋9 +⋯+ 𝑋$] = 𝔼[𝑋9] + ⋯+ 𝔼[𝑋$].   

Because: 𝔼[𝑋9 +⋯+ 𝑋$] = 𝔼[(𝑋9+⋯+ 𝑋$%9) + 𝑋$]
= 𝔼[𝑋9 +⋯+ 𝑋$%9] + 𝔼[𝑋$] = ⋯



Linearity of Expectation – Proof 
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𝔼[𝑋 + 𝑌] = ∑& 𝑃(𝜔)(𝑋 𝜔 + 𝑌(𝜔))

= 𝔼[𝑋] + 𝔼[𝑌]

= ∑& 𝑃 𝜔 𝑋 𝜔 + ∑& 𝑃 𝜔 𝑌 𝜔

Theorem. For any two random variables 𝑋 and 𝑌
(𝑋, 𝑌 do not need to be independent)

𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌].   



Using LOE to compute complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

𝑋 = 𝑋9 +⋯+ 𝑋$
● LOE: Apply linearity of expectation.

𝔼[𝑋] = 𝔼[𝑋9] + ⋯+ 𝔼[𝑋$].   
● Conquer: Compute the expectation of each 𝑋7

Often, 𝑋" are indicator (0/1) random variables.



Indicator random variables – 0/1 valued

For any event 𝐴, can define the indicator random variable 𝑋R for 𝐴

𝑋R = J1 if event 𝐴 occurs
0 if event 𝐴 does not occur

𝑃 𝑋8 = 1 = 𝑃 𝐴
𝑃 𝑋8 = 0 = 1 − 𝑃 𝐴

𝐴
Ω

1
0

0.05

0.3
0.2

0

0.05

0.1

0.3

0.55

0.45

ℝ
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𝔼 𝑍 = 0
()*

+

𝑘 ⋅ 𝑃(𝑍 = 𝑘)

Can we solve it more 
elegantly, please?

This Photo by Unknown Author is 
licensed under CC BY-NC

Example – Coin Tosses – The brute force method 
We flip 𝑛 coins, each one heads with probability 𝑝,
𝑍 is the number of heads, what is 𝔼[𝑍]?   

= 0
()*

+

𝑘 ⋅
𝑛!

𝑘! 𝑛 − 𝑘 !
𝑝( 1 − 𝑝 +,( = 0

()-

+
𝑛!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝( 1 − 𝑝 +,(

= 𝑛𝑝0
()-

+
(𝑛 − 1)!

(𝑘 − 1)! 𝑛 − 𝑘 !
𝑝(,- 1 − 𝑝 +,(

= 𝑛𝑝0
()*

+,-
(𝑛 − 1)!

𝑘! 𝑛 − 1 − 𝑘 ! 𝑝
( 1 − 𝑝 (+,-),(

= 𝑛𝑝0
()*

+,-
𝑛 − 1
𝑘 𝑝( 1 − 𝑝 (+,-),( = 𝑛𝑝 𝑝 + 1 − 𝑝 +,- = 𝑛𝑝 ⋅ 1 = 𝑛𝑝

= 0
()*

+

𝑘 ⋅
𝑛
𝑘 𝑝( 1 − 𝑝 +,(

http://www.pngall.com/baby-png
https://creativecommons.org/licenses/by-nc/3.0/


Computing complicated expectations

Often boils down to the following three steps:

● Decompose: Finding the right way to decompose the random variable 
into sum of simple random variables 

𝑋 = 𝑋9 +⋯+ 𝑋$
● LOE: Apply linearity of expectation.

𝔼[𝑋] = 𝔼[𝑋9] + ⋯+ 𝔼[𝑋$].   
● Conquer: Compute the expectation of each 𝑋7

Often, 𝑋" are indicator (0/1) random variables.



Example – Coin Tosses

We flip 𝑛 coins, each toss independent, comes up heads with probability 𝑝
𝑍 is the number of heads, what is 𝔼[𝑍]?   

𝑋7 = J1, 𝑖
th coin Xlip is heads

0, 𝑖th coin Xlip is tails.

34

Fact. 𝑍 = 𝑋9 +⋯+ 𝑋$

Outcome 𝑋/ 𝑋0 𝑋1 𝑍
TTT 0 0 0 0

TTH 0 0 1 1

THT 0 1 0 1

THH 0 1 1 2

HTT 1 0 0 1

HTH 1 0 1 2

HHT 1 1 0 2

HHH 1 1 1 3



Example – Coin Tosses

We flip 𝑛 coins, each toss independent, comes up heads with probability 𝑝
𝑍 is the number of heads, what is 𝔼[𝑍]?   

- 𝑋7 = J1, 𝑖
th coin Xlip is heads

0, 𝑖th coin Xlip is tails.

35

𝑃 𝑋2 = 1 = 𝑝
𝑃 𝑋2 = 0 = 1 − 𝑝

Fact. 𝑍 = 𝑋9 +⋯+ 𝑋$

𝔼[𝑋"] = 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ 0 = 𝑝

Linearity of Expectation:
𝔼[𝑍] = 𝔼[𝑋# +⋯+ 𝑋$] = 𝔼[𝑋#] + ⋯+ 𝔼[𝑋$] = 𝑛 ⋅ 𝑝
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Kandinsky

http://spacesbetweenthegaps.wherefishsing.com/2011/10/creative-cauldron-wassily-kandinsky.html
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Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All permutations 
equally likely.

• Let 𝑋 be the number of students who get their own HW

What is 𝔼[𝑋]? Use linearity of expectation!

37
𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

LOE: Apply linearity of expectation.
𝔼[𝑋] = 𝔼[𝑋9] + ⋯+ 𝔼[𝑋$]. 

Conquer: Compute the expectation of each 𝑋7 and sum! 

Decompose: Find the right way to 
decompose the random variable into 
sum of simple random variables 

𝑋 = 𝑋9 +⋯+ 𝑋$



Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
What is 𝔼[𝑋]? Use linearity of expectation!

38

𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

LOE:

Conquer:

Decompose:



Example: Returning Homeworks

• Class with 𝑛 students, randomly hand back homeworks.       All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
What is 𝔼[𝑋]? Use linearity of expectation!

39

𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3 3
1/6 1, 3, 2 1
1/6 2, 1, 3 1
1/6 2, 3, 1 0
1/6 3, 1, 2 0
1/6 3, 2, 1 1

𝑋7 = 1 iff  𝑖𝑡ℎ student gets own HW back

LOE: 𝔼[𝑋] = 𝔼[𝑋9] + ⋯+ 𝔼[𝑋$]

Conquer: 𝔼[𝑋7] =  9
$

Therefore, 𝔼 𝑋 = 𝑛 ⋅ #
$
= 1

Decompose: What is 𝑋7?



Pairs with the same  birthday

● In a class of 𝑚 students, on average how many pairs of people have 
the same birthday (assuming 365 equally likely birthdays)?



Pairs with the same  birthday

● In a class of 𝑚 students, on average how many pairs of people have 
the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (𝑖, 𝑗) for 𝑖 ≠ 𝑗
𝑋7S = 1 iff students 𝑖 and 𝑗 have the same birthday

LOE:   
𝑚
2 indicator variables 𝑋7S

Conquer:     𝔼 𝑋7S = 9
6TU

so total expectation is   
V
5
6TU

= V(V%9)
W6X

pairs



Linearity of Expectation – Even stronger
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Theorem. For any random variables 𝑋9, … , 𝑋$, and real numbers 
𝑎9, … , 𝑎$ ∈ ℝ,

𝔼[𝑎9𝑋9 +⋯+ 𝑎$𝑋$] = 𝑎9𝔼[𝑋9] + ⋯+ 𝑎$𝔼[𝑋$].   


