CSE 312 Foundations of Computing II

Lecture 8: More on random variables; expectation

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Today:

- Recap
- Expectation
- Linearity of Expectation
- Indicator Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	
1/6	1, 3, 2	
1/6	2, 1, 3	
1/6	2, 3, 1	
1/6	3, 1, 2	
1/6	3, 2, 1	

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$

 $\sum_{x\in\Omega_X}p_X(x)=1$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$F_X(x) = P(X \le x)$$

 Class with 3 students, randomly hand back homeworks. 										1/6	2, 3, 1	0	
All permutations equally	ı likely.									1/6	3, 1, 2	0	
					•					1/6	3, 2, 1	1	
• Let X be the number	of student	ts who	gei	τηε	ir ow	n Hvv							
		Proh	babi	ilitv N	Mass	Fn	C	umu	ılati	ive D	Distrib	ution Fr	ו
		PMF	:	p_X	1455		. 0	DF		F_X			-
P(X = 0) = 1/3	1												
I(X - 0) - I/3													
P(X = 1) = 1/2	1/2												
P(X=3) = 1/6													
	0 -		•		-	_			•		_		
		-1	U	1	2	3	-	1	U	1	2	3	
												10	

Pr(w)

1/6

1/6

1/6

ω

1, 2, 3

1, 3, 2

2, 1, 3

 $X(\boldsymbol{\omega})$

3

1

1

Example: Returning Homeworks

Class with 3 students randomly hand back homeworks

Example – Number of Heads

We flip n coins, independently, each heads with probability p

 $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$

X = # of heads

 $p_X(k) = P(X = k) =$

Example – Number of Heads

We flip n coins, independently, each heads with probability p

 $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$

X = # of heads $p_X(k) = P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$ # of sequences with k heads
Prob of sequence w/k heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation <

Expectation (Idea)

Example. Toss a coin 20 times independently with probability ¼ of coming up heads on each toss.

X = number of heads

How many heads do you *expect* to see?

What if you toss it independently *n* times and it comes up heads with probability *p* each time?

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathbb{RV} X: \Omega \to \mathbb{R}$, the **expectation** or **expected value** or **mean** of *X* is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

16

Expectation

Example. Two fair coin flips $\Omega = \{TT, HT, TH, HH\}$

X = number of heads

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$
$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW
- What is $\mathbb{E}[X]$?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	1, 3, 2	1
1/6	3, 2, 1	1
1/6	2, 1, 3	1
1/6	1, 2, 3	3

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	$= 6 \cdot \frac{1}{-} = 1$
1/6	3, 1, 2	0	6
1/6	3, 2, 1	1	

$$\mathbb{E}[Z] =$$

Can calculate this directly but...

If you get tails you have used one try and have the same experiment left

 $\mathbb{E}[Z] =$

Another view: If you get heads first try you get Z = 1;

If you get tails you have used one try and have the same experiment left

 $\mathbb{E}[Z] = q \cdot 1 + (1-q)(1 + \mathbb{E}(Z))$

Solving gives $q \cdot \mathbb{E}[Z] = q + (1 - q) = 1$ | Implies $\mathbb{E}[Z] = 1/q$

23

Example – Coin Tosses

We flip n coins, each toss independent, probability p of coming up heads.

Z is the number of heads, what is $\mathbb{E}(Z)$?

Example – Coin Tosses

We flip n coins, each toss independent; heads with probability p,

Z is the number of heads, what is $\mathbb{E}[Z]$? $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot {n \choose k} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$
$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

25

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation
- Linearity of Expectation

Linearity of Expectation

Theorem. For any two random variables X and Y

(no conditions whatsoever on the random variables)

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

Or, more generally: For any random variables X_1, \dots, X_n , $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

Because: $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[(X_1 + \dots + X_{n-1}) + X_n]$ = $\mathbb{E}[X_1 + \dots + X_{n-1}] + \mathbb{E}[X_n] = \dots$

Linearity of Expectation – Proof

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$

 $\mathbb{E}[X + Y] = \sum_{\omega} P(\omega)(X(\omega) + Y(\omega))$ $= \sum_{\omega} P(\omega)X(\omega) + \sum_{\omega} P(\omega)Y(\omega)$ $= \mathbb{E}[X] + \mathbb{E}[Y]$

Using LOE to compute complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

• <u>LOE</u>: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

<u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variables – 0/1 valued

For any event A, can define the indicator random variable X_A for A

 $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases} \begin{cases} P(X_A = 1) = P(A) \\ P(X_A = 0) = 1 - P(A) \end{cases}$

Example – Coin Tosses – The brute force method

We flip *n* coins, each one heads with probability *p*, *Z* is the number of heads, what is $\mathbb{E}[Z]$?

 $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot {\binom{n}{k}} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$ $= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$ Can we

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

licensed under CC BY-NC

32

Computing complicated expectations

Often boils down to the following three steps:

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

 $X = X_1 + \dots + X_n$

• <u>LOE</u>: Apply linearity of expectation.

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

• <u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Example – Coin Tosses

We flip n coins, each toss independent, comes up heads with probability pZ is the number of heads, what is $\mathbb{E}[Z]$?

 $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Outcome	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Ζ
TTT	0	0	0	0
ТТН	0	0	1	1
THT	0	1	0	1
ТНН	0	1	1	2
HTT	1	0	0	1
нтн	1	0	1	2
ННТ	1	1	0	2
ннн	1	1	1	3

Fact.
$$Z = X_1 + \dots + X_n$$

Example – Coin Tosses

We flip *n* coins, each toss independent, comes up heads with probability *p Z* is the number of heads, what is $\mathbb{E}[Z]$?

- $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ coin flip is heads} \\ 0, \ i^{\text{th}} \text{ coin flip is tails.} \end{cases}$

Fact.
$$Z = X_1 + \dots + X_n$$

Linearity of Expectation: $\mathbb{E}[Z] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = n \cdot p$

 $P(X_i = 1) = p$ $P(X_i = 0) = 1 - p$ $\mathbb{E}[X_i] = p \cdot 1 + (1 - p) \cdot 0 = p$

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

<u>Decompose:</u> Find the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \dots + X_n$$

LOE: Apply linearity of expectation. $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

Conquer: Compute the expectation of each X_i and sum!

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose:

LOE:

Conquer:

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW What is $\mathbb{E}[X]$? Use linearity of expectation!

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Decompose: What is X_i?

 $X_i = 1$ iff i^{th} student gets own HW back LOE: $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$ Conquer: $\mathbb{E}[X_i] = \frac{1}{n}$ Therefore, $\mathbb{E}[X] = n \cdot \frac{1}{n} = 1$

39

Pairs with the same birthday

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Pairs with the same birthday

• In a class of *m* students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve **pairs** of students (i, j) for $i \neq j$ $X_{ij} = 1$ iff students *i* and *j* have the same birthday

LOE:
$$\binom{m}{2}$$
 indicator variables X_{ij}
Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs

Linearity of Expectation – Even stronger

Theorem. For any random variables X_1, \ldots, X_n , and real numbers $a_1, \ldots, a_n \in \mathbb{R}$,

 $\mathbb{E}[a_1X_1 + \dots + a_nX_n] = a_1\mathbb{E}[X_1] + \dots + a_n\mathbb{E}[X_n].$