CSE 312
Foundations of Computing II

Lecture 8: More on random variables; expectation
Last Class:
- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Today:
- Recap
- Expectation
- Linearity of Expectation
- Indicator Random Variables
Definition. A random variable (RV) for a probability space \((\Omega, P)\) is a function \(X: \Omega \rightarrow \mathbb{R}\).

The set of values that \(X\) can take on is its range/support: \(X(\Omega)\) or \(\Omega_X\).
Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

<table>
<thead>
<tr>
<th>$\Pr(\omega)$</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td></td>
</tr>
</tbody>
</table>
Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables partition the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$
Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

<table>
<thead>
<tr>
<th>$\Pr(\omega)$</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ω

$X(\omega) = 0$

- $\{2, 3, 1\}$
- $\{3, 1, 2\}$

$X(\omega) = 1$

- $\{1, 3, 2\}$
- $\{2, 1, 3\}$
- $\{3, 1, 2\}$

$X(\omega) = 3$

- $\{1, 2, 3\}$
Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the **probability mass function (pmf)** of X specifies, for any real number x, the probability that $X = x$

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$

$$\sum_{x \in \Omega_X} p_X(x) = 1$$

For a RV $X: \Omega \to \mathbb{R}$, the **cumulative distribution function (cdf)** of X specifies, for any real number x, the probability that $X \leq x$

$$F_X(x) = P(X \leq x)$$
Example – Two fair independent coin flips

\[X = \text{number of heads} \]
Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

<table>
<thead>
<tr>
<th>$\Pr(\omega)$</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
</tbody>
</table>

$$P(X = 0) = \frac{1}{3}$$
$$P(X = 1) = \frac{1}{2}$$
$$P(X = 3) = \frac{1}{6}$$
Example – Number of Heads

We flip n coins, independently, each heads with probability p

$\Omega = \{HH \ldots HH, HH \ldots HT, HH \ldots TH, \ldots, TT \ldots TT\}$

$X = \# \text{ of heads}$

$$p_X(k) = P(X = k) =$$
Example – Number of Heads

We flip n coins, independently, each heads with probability p

$$\Omega = \{\text{HH \ldots HH, HH \ldots HT, HH \ldots TH, \ldots , TT \ldots TT}\}$$

$X = \# \text{ of heads}$

$$p_X(k) = P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$

of sequences with k heads

Prob of sequence w/ k heads
Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation
Expectation (Idea)

Example. Toss a coin 20 times independently with probability $\frac{1}{4}$ of coming up heads on each toss.

$X = \text{number of heads}$

How many heads do you *expect* to see?

What if you toss it independently n times and it comes up heads with probability p each time?
Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value or mean of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: “Weighted average” of the possible outcomes (weighted by probability)
Expectation

Example. Two fair coin flips

\[\Omega = \{TT, HT, TH, HH\} \]

\[X = \text{number of heads} \]

What is \(\mathbb{E}[X] \)?

\[
\begin{align*}
\mathbb{E}[X] &= 0 \cdot p_X(0) + 1 \cdot p_X(1) + 2 \cdot p_X(2) \\
&= 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} \\
&= \frac{1}{2} + \frac{1}{2} = 1
\end{align*}
\]
Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- What is $\mathbb{E}[X]$?

<table>
<thead>
<tr>
<th>$\text{Pr}(\omega)$</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
</tbody>
</table>

$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$

$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$
Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

<table>
<thead>
<tr>
<th>Pr(ω)</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
</tbody>
</table>

$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$

$= 6 \cdot \frac{1}{6} = 1$
Example – Flipping a biased coin until you see heads

- Biased coin, each flip indep:
 \[P(H) = q > 0 \]
 \[P(T) = 1 - q \]
- \(Z = \# \) of coin flips until first head

\[P(Z = i) = \]

\[\mathbb{E}[Z] = \]
Example – Flipping a biased coin until you see heads

• Biased coin, each flip indep:
 \[P(H) = q > 0 \]
 \[P(T) = 1 - q \]

• \(Z = \# \) of coin flips until first head

\[
P(Z = i) = q (1 - q)^{i-1}
\]

\[
\mathbb{E}[Z] = \sum_{i=1}^{\infty} i \cdot P(Z = i) = \sum_{i=1}^{\infty} i \cdot q (1 - q)^{i-1}
\]

Converges, so \(\mathbb{E}[Z] \) is finite

Can calculate this directly but...
Example – Flipping a biased coin until you see heads

• Biased coin, each flip indep:
 \[P(H) = q > 0 \]
 \[P(T) = 1 - q \]

• \(Z \) = # of coin flips until first head

Another view: If you get heads first try you get \(Z = 1 \); If you get tails you have used one try and have the same experiment left

\[\mathbb{E}[Z] = \]
Example – Flipping a biased coin until you see heads

• Biased coin:
 \(P(H) = q > 0 \)
 \(P(T) = 1 - q \)

• \(Z \) = # of coin flips until first head

 \[Z = \begin{cases} 1 & \text{if heads first try} \\ 1 & \text{if tails first try} \end{cases} \]

 Another view: If you get heads first try you get \(Z = 1 \);
 If you get tails you have used one try and have the same experiment left

\[\mathbb{E}[Z] = q \cdot 1 + (1 - q)(1 + \mathbb{E}(Z)) \]

Solving gives \(q \cdot \mathbb{E}[Z] = q + (1 - q) = 1 \) \(\implies \mathbb{E}[Z] = 1/q \)
Example – Coin Tosses

We flip n coins, each toss independent, probability p of coming up heads.

Z is the number of heads, what is $\mathbb{E}(Z)$?
Example – Coin Tosses

We flip \(n \) coins, each toss independent; heads with probability \(p \), \(Z \) is the number of heads, what is \(\mathbb{E}[Z] \)?

\[
\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^k (1-p)^{n-k}
\]

\[
= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^k (1-p)^{n-k}
\]

\[
= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}
\]

\[
= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}
\]

\[
= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np
\]
Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Expectation
• Linearity of Expectation
Linearity of Expectation

Theorem. For any two random variables X and Y
(no conditions whatsoever on the random variables)

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

Or, more generally: For any random variables X_1, \ldots, X_n,

$$\mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n].$$

Because:

$$\mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[(X_1 + \cdots + X_{n-1}) + X_n]$$

$$\hspace{1cm} = \mathbb{E}[X_1 + \cdots + X_{n-1}] + \mathbb{E}[X_n] = \cdots$$
Linearity of Expectation – Proof

Theorem. For any two random variables X and Y (X, Y do not need to be independent)

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

$$\mathbb{E}[X + Y] = \sum_\omega P(\omega)(X(\omega) + Y(\omega))$$

$$= \sum_\omega P(\omega)X(\omega) + \sum_\omega P(\omega)Y(\omega)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$
Using LOE to compute complicated expectations

Often boils down to the following three steps:

- **Decompose:** Finding the right way to decompose the random variable into sum of simple random variables
 \[X = X_1 + \cdots + X_n \]
- **LOE:** Apply linearity of expectation.
 \[\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n]. \]
- **Conquer:** Compute the expectation of each \(X_i \)

Often, \(X_i \) are **indicator** (0/1) random variables.
Indicator random variables – 0/1 valued

For any event A, can define the indicator random variable X_A for A

$$X_A = \begin{cases}
1 & \text{if event } A \text{ occurs} \\
0 & \text{if event } A \text{ does not occur}
\end{cases}$$

$$P(X_A = 1) = P(A)$$

$$P(X_A = 0) = 1 - P(A)$$
Example – Coin Tosses – The brute force method

We flip \(n \) coins, each one heads with probability \(p \),
\(Z \) is the number of heads, what is \(\mathbb{E}[Z] \)?

\[
\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^k (1 - p)^{n-k}
\]

\[
= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n - k)!} p^k (1 - p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k - 1)! (n - k)!} p^k (1 - p)^{n-k}
\]

\[
= np \sum_{k=1}^{n} \frac{(n - 1)!}{(k - 1)! (n - k)!} p^{k-1} (1 - p)^{n-k}
\]

\[
= np \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! (n - 1 - k)!} p^k (1 - p)^{(n-1)-k}
\]

\[
= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1 - p)^{(n-1)-k} = np (p + (1 - p))^{n-1} = np \cdot 1 = np
\]

Can we solve it more elegantly, please?
Computing complicated expectations

Often boils down to the following three steps:

- **Decompose:** Finding the right way to decompose the random variable into sum of simple random variables

 \[X = X_1 + \cdots + X_n \]

- **LOE:** Apply linearity of expectation.

 \[\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n]. \]

- **Conquer:** Compute the expectation of each \(X_i \)

Often, \(X_i \) are indicator (0/1) random variables.
Example – Coin Tosses

We flip n coins, each toss independent, comes up heads with probability p

Z is the number of heads, what is $\mathbb{E}[Z]$?

$$X_i = \begin{cases} 1, & \text{i^{th} coin flip is heads} \\ 0, & \text{i^{th} coin flip is tails.} \end{cases}$$

\[Z = X_1 + \cdots + X_n \]

<table>
<thead>
<tr>
<th>Outcome</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TTH</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>THT</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>THH</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HTH</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HTH</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HHT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HHH</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Example – Coin Tosses

We flip n coins, each toss independent, comes up heads with probability p

Z is the number of heads, what is $\mathbb{E}[Z]$?

$X_i = \begin{cases} 1, & \text{i^{th} coin flip is heads} \\ 0, & \text{i^{th} coin flip is tails.} \end{cases}$

Fact. $Z = X_1 + \cdots + X_n$

Linearity of Expectation:

$$\mathbb{E}[Z] = \mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = n \cdot p$$

$P(X_i = 1) = p$

$P(X_i = 0) = 1 - p$

$$\mathbb{E}[X_i] = p \cdot 1 + (1 - p) \cdot 0 = p$$
Kandinsky

This Photo by Unknown Author is licensed under CC BY-SA-NC
Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

<table>
<thead>
<tr>
<th>$\Pr(\omega)$</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decompose: Find the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \cdots + X_n$$

LOE: Apply linearity of expectation.

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n].$$

Conquer: Compute the expectation of each X_i and sum!
Example: Returning Homeworks

• Class with n students, randomly hand back homeworks. All permutations equally likely.
• Let X be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

Decompose:

<table>
<thead>
<tr>
<th>$\Pr(\omega)$</th>
<th>ω</th>
<th>$X(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
</tbody>
</table>

LOE:

Conquer:
Example: Returning Homeworks

• Class with \(n \) students, randomly hand back homeworks. All permutations equally likely.
• Let \(X \) be the number of students who get their own HW

What is \(\mathbb{E}[X] \)? Use linearity of expectation!

<table>
<thead>
<tr>
<th>(\Pr(\omega))</th>
<th>(\omega)</th>
<th>(X(\omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1, 2, 3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>1, 3, 2</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 1, 3</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>2, 3, 1</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>3, 2, 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decompose: What is \(X_i \)?

\(X_i = 1 \) iff \(i^{th} \) student gets own HW back

LOE: \(\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] \)

Conquer: \(\mathbb{E}[X_i] = \frac{1}{n} \)

Therefore, \(\mathbb{E}[X] = n \cdot \frac{1}{n} = 1 \)
Pairs with the same birthday

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?
Pairs with the same birthday

- In a class of m students, on average how many pairs of people have the same birthday (assuming 365 equally likely birthdays)?

Decompose: Indicator events involve pairs of students (i, j) for $i \neq j$

$$X_{ij} = 1 \text{ iff students } i \text{ and } j \text{ have the same birthday}$$

LOE: $\binom{m}{2}$ indicator variables X_{ij}

Conquer: $\mathbb{E}[X_{ij}] = \frac{1}{365}$ so total expectation is $\frac{\binom{m}{2}}{365} = \frac{m(m-1)}{730}$ pairs
Linearity of Expectation – Even stronger

Theorem. For any random variables X_1, \ldots, X_n, and real numbers $a_1, \ldots, a_n \in \mathbb{R}$,

$$\mathbb{E}[a_1 X_1 + \cdots + a_n X_n] = a_1 \mathbb{E}[X_1] + \cdots + a_n \mathbb{E}[X_n].$$