CSE 312 Foundations of Computing II

Lecture 8: More on random variables; expectation

1

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Today:

- Recap
- Expectation
- Linearity of Expectation
- Indicator Random Variables

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

Example: Returning Homeworks

51 5253

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$	
1/6	1, 2, 3	3	
1/6	1, 3, 2	1	
1/6	2, 1, 3	1	
1/6	2, 3, 1	0	
1/6	3, 1, 2	0	
1/6	3, 2, 1	1	

Review Random Variables

Definition. A random variable (RV) for a probability space (Ω, P) is a function $X: \Omega \to \mathbb{R}$.

The set of values that X can take on is its range/support: $X(\Omega)$ or Ω_X

$$\{X = x_i\} = \{\omega \in \Omega \mid X(\omega) = x_i\}$$

Random variables **partition** the sample space.

$$\Sigma_{x \in X(\Omega)} P(X = x) = 1$$

$$X(\omega) = x_1$$

$$X(\omega) = x_3$$

$$X(\omega) = x_2$$

$$X(\omega) = x_3$$

J_= { x, xa, xs, xy 5

Review PMF and CDF

Definitions:

For a RV $X: \Omega \to \mathbb{R}$, the probability mass function (pmf) of X specifies, for any real number x, the probability that X = x

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$
$$\sum_{x \in \Omega_X} p_X(x) = 1$$

For a RV $X: \Omega \to \mathbb{R}$, the cumulative distribution function (cdf) of X specifies, for any real number x, the probability that $X \leq x$

$$F_X(x) = P(X \le x)$$

Example – Number of Heads We flip n coins, independently, each heads with probability p $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$ N = {0,1,2, --2 X = # of heads $p_X(k) = P(X = k) =$ $p^{k}(1-p)^{n-k} = p^{k}(1-p)^{n-k}$

12

Example – Number of Heads

We flip n coins, independently, each heads with probability p

 $\Omega = \{HH \cdots HH, HH \cdots HT, HH \cdots TH, \dots, TT \cdots TT\}$

X = # of heads $p_X(k) = P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$ # of sequences with k heads
Prob of sequence w/k heads

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation <

What if you toss it independently *n* times and it comes up heads with probability *p* each time?

Review Expected Value of a Random Variable

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

- $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$ $\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$
- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

• Wh	nat is 2	$\mathbb{E}[X]$?	E	(x)
	Pr(w)	ω	$X(\boldsymbol{\omega})$	
\rightarrow	1/6	2, 3, 1	0	
\rightarrow	1/6	3, 1, 2	0	-0.P(x-0) + 0.(x-1) + 3.P(x-3)
\rightarrow	1/6	1, 3, 2	1	
\rightarrow	1/6	3, 2, 1	1	
	1/6	2, 1, 3	1	
	1/6	1, 2, 3	3	18
				X=xa

Example: Returning Homeworks

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$
$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$\mathbb{E}[X] = 3 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6}$$
$$= 6 \cdot \frac{1}{6} = 1$$

Example – Flipping a biased coin until you see heads

Can calculate this directly but...

Example – Flipping a biased coin until you see heads

Example – Flipping a biased coin until you see heads

Another view: If you get heads first try you get Z = 1;

If you get tails you have used one try and have the same experiment left

 $\mathbb{E}[Z] = q \cdot 1 + (1-q)(1 + \mathbb{E}(Z))$

Solving gives $q \cdot \mathbb{E}[Z] = q + (1 - q) = 1$ [mplies $\mathbb{E}[Z] = 1/q$

Example – Coin Tosses

We flip n coins, each toss independent, probability p of coming up heads.

Z is the number of heads, what is $\mathbb{E}(Z)$? $P(Z-k) = \begin{cases} \binom{n}{k} & p^k(1-p)^{-k} & k \in \{0, 1, \dots, n\} \\ 0 & \text{otherwise} \end{cases}$.

E(2)= Ž k P(2-k)

 $= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$

K=0

24

Example – Coin Tosses

We flip n coins, each toss independent; heads with probability p,

Z is the number of heads, what is $\mathbb{E}[Z]$? $\mathbb{E}[Z] = \sum_{k=0}^{n} k \cdot P(Z = k) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} k \cdot \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)! (n-k)!} p^{k} (1-p)^{n-k}$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)! (n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k! (n-1-k)!} p^k (1-p)^{(n-1)-k}$$

Can we solve it more elegantly, please?

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np (p + (1-p))^{n-1} = np \cdot 1 = np$$

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

25

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation
- Linearity of Expectation

 $\mathbb{E}[X] = \sum_{i=1}^{\infty} X(\omega) \cdot P(\omega)$

Using LOE to compute complicated expectations

Often boils down to the following three steps:

- <u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables
- LOE: Apply linearity of expectation.
- <u>Conquer</u>: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variables – 0/1 valued

For any event *A*, can define the indicator random variable X_A for *A* $X_A = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{if event } A \text{ does not occur} \end{cases} \begin{array}{c} P(X_A = 1) = P(A) \\ P(X_A = 0) = 1 - P(A) \\ P(X_A = 0) = 1 - P(A) \end{cases}$

