## CSE 312 <br> Foundations of Computing II

Lecture 8: More on random variables; expectation

Anonymous Questions: www. slido.com/1891306

## Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)

Today:

- Recap
- Expectation
- Linearity of Expectation
- Indicator Random Variables



## Review Random Variables

Definition. A random variable (RV) for a probability space $(\Omega, P)$ is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that $X$ can take on is its range/support: $X(\Omega)$ or $\Omega_{X}$

## Example: Returning Homeworks

$$
515253
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW


$$
\Omega_{x}=\{0,1,3\}
$$

## Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

$$
\begin{aligned}
& X(\omega)=i \\
& =\{\omega \mid X(\omega)=i\}
\end{aligned}
$$



$$
P(X(\omega)=0)=\frac{1}{3}
$$

## Review Random Variables

Definition. A random variable (RV) for a probability space $(\Omega, P)$ is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that $X$ can take on is its range/support: $X(\Omega)$ or $\Omega_{X}$
$\left\{X=x_{i}\right\}=\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$
Random variables partition the sample space.

$$
\Sigma_{x \in X(\Omega)} P(X=x)=1
$$


$\Omega_{\bar{x}}\left\{x_{1}, x_{y}, x_{0}, x_{x}\right\}$

## Review PMF and CDF

## Definitions:

 specifies, for any real number $x$ the probability that $\bar{X}=x$

$$
p_{X}(x)=P(X=x)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

$$
\sum_{x \in \Omega_{X}} p_{X}(x)=1
$$

For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function (cdf) of $X$ specifies, for any real number $x$, the probability that $X \leq x$


## Example - Two fair independent coin flips




## Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |



Example - Number of Heads
We flip $n$ coins, independently, each heads with probability $p$

$$
\begin{aligned}
& \Omega=\{\mathrm{HH} \cdots \mathrm{HH}, \mathrm{HH} \cdots \mathrm{HT}, \mathrm{HH} \cdots \mathrm{TH}, \ldots, \text { To } \cdots \mathrm{TT}\} \quad|\Omega|=2^{n} \\
& X=\text { \# of heads } \\
& \Omega_{x}=\{0,1,2, \ldots, n\} \\
& p_{X}(k)=P(X=k)=\left(\begin{array}{l}
n \\
k
\end{array} p^{p^{k}(1-p)^{n-k}}\right.
\end{aligned}
$$

## Example - Number of Heads

We flip $n$ coins, independently, each heads with probability $p$
$\Omega=\{$ HH $\cdots$ HH, HH $\cdots$ HT, HH $\cdots$ TH, $\ldots$, TT $\cdots$ TT $\}$
$X=$ \# of heads


## Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation


## Expectation (Idea)

$$
\Omega_{x}=\{0,1, \ldots, 20\}
$$

Example. Toss a coin 20 times independently with probability $1 / 4$ of coming up heads on each toss.
$X=$ number of heads

How many heads do you expect to see?
$20 \quad \frac{1}{4}=$


What if you toss it independently $n$ times and it comes up heads with probability $p$ each time?

## Review Expected Value of a Random Variable

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $X$ is

$$
\begin{gathered}
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
\mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x p_{X}(x)
\end{gathered}
$$

or equivalently

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

## Expectation

Example. Two fair coin flips
$\Omega=\{\mathrm{TT}, \mathrm{HT}, \mathrm{TH}, \mathrm{HH}\}$
$X=$ number of heads

## $p_{X}$



$$
\Longrightarrow \begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
& \\
& \mathbb{E}[X]=\sum_{x \in \mathrm{X}(\Omega)} x \cdot P(X=x)
\end{aligned}
$$

## What is $\mathbb{E}[X]$ ?



Example: Returning Homeworks


- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW
- What is $\mathbb{E}[X]$ ?

$$
E(x)=0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}
$$

$\rightarrow$|  | $\operatorname{Pr}(\boldsymbol{\omega})$ | $\omega$ |
| :---: | :---: | :---: |
|  | $\boldsymbol{\omega}(\boldsymbol{\omega})$ |  |
| $1 / 6$ | $2,3,1$ | 0 |
| $\rightarrow$ | $1 / 6$ | $3,1,2$ |
| $\rightarrow$ | 0 |  |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $3,2,1$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $1,2,3$ | 3 |

$$
=\frac{0 \cdot p(x=0)+1 \cdot p(x=1)+3 \cdot p(x=3)}{\frac{x}{x=10}+18}
$$

## Example: Returning Homeworks

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega) \\
& \mathbb{E}[X]=\sum_{x \in X(\Omega)} x \cdot P(X=x)
\end{aligned}
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW

| $\operatorname{Pr}(\boldsymbol{\omega})$ | $\boldsymbol{\omega}$ | $\boldsymbol{X}(\boldsymbol{\omega})$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ | 3 |
| $1 / 6$ | $1,3,2$ | 1 |
| $1 / 6$ | $2,1,3$ | 1 |
| $1 / 6$ | $2,3,1$ | 0 |
| $1 / 6$ | $3,1,2$ | 0 |
| $1 / 6$ | $3,2,1$ | 1 |

$$
\begin{aligned}
\mathbb{E}[X] & =3 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6} \\
& =6 \cdot \frac{1}{6}=1
\end{aligned}
$$

$$
E(2)=\sum_{x \in i_{2}} P P(2=x) \quad \Omega_{x}=\{1,2,3, \ldots\}
$$

Example - Flipping a biased coin until you see heads

- Biased coin, each flip indep:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=$ \# of coin flips until first head

$$
P(Z=i)=(1-q)^{i-1} q
$$

$$
p(z=1)=9
$$

$$
\begin{array}{r}
\mathbb{E}[Z]=\sum_{i=1}^{\infty} i p(2=i)=\sum_{i=1}^{\infty} i(1-q)^{i-1} q \\
=\frac{1}{9}
\end{array}
$$

$$
p(2=2)=(1-q) q
$$

$$
P(2-3)=(1-q)^{2} q
$$

## Example - Flipping a biased coin until you see heads

- Biased coin, each flip indep:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=\#$ of coin flips until first head

$$
\begin{aligned}
& P(Z=i)=q(1-q)^{i-1} \\
& \mathbb{E}[Z]=\sum_{i=1}^{\infty} i \cdot P(Z=i)=\sum_{i=1}^{\infty} i \cdot q(1-q)^{i-1}
\end{aligned}
$$

$$
\text { Converges, so } \mathbb{E}[Z] \text { is finite }
$$

Can calculate this directly but...

## Example - Flipping a biased coin until you see heads

- Biased coin, each flip indep:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$

- $Z=\#$ of coin flips until first head

$$
\overbrace{1-q}^{\frac{1-q}{1-q}} \ldots
$$

Another view: If you get heads first try you get $Z=1$; If you get tails you have used one try and have the same experiment left

$$
\begin{aligned}
& \mathbb{E}[Z]=q \cdot 1+(1-q)[1+E(2)] \\
&=9+(1-q)+\underbrace{(1-q) E(2)} \\
& q E(2)=1 \Rightarrow E(2)=\frac{1}{q}
\end{aligned}
$$

## Example - Flipping a biased coin until you see heads

- Biased coin:

$$
\begin{aligned}
& P(H)=q>0 \\
& P(T)=1-q
\end{aligned}
$$



Another view: If you get heads first try you get $Z=1$;
If you get tails you have used one try and have the same experiment left

$$
\mathbb{E}[Z]=q \cdot 1+(1-q)(1+\mathbb{E}(Z))
$$

Solving gives $\quad q \cdot \mathbb{E}[Z]=q+(1-q)=1 \quad$ Implies $\mathbb{E}[Z]=1 / q$

Example - Coin Tosses
We flip $n$ coins, each toss independent, probability $p$ of coming up heads.
$Z$ is the number of heads, what is $\mathbb{E}(Z)$ ?

$$
P(2=k)= \begin{cases}\binom{n}{k} p^{k}(1-p)^{n-k} & k \in\{0,1, \ldots, \\ 0 & \text { otherwise. }\end{cases}
$$

$$
\begin{aligned}
E(2) & =\sum_{k=0}^{n} k p(2=k) \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

## Example - Coin Tosses

We flip $n$ coins, each toss independent; heads with probability $p$, $Z$ is the number of heads, what is $\mathbb{E}[Z]$ ?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

Can we solve it more

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$ elegantly, please?

$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p$

## Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation
- Linearity of Expectation

Linearity of Expectation


Theorem. For any two random variables $X$ and $Y$
(no conditions whatsoever on the random variables)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$

Or, more generally: For any random variables $X_{1}, \ldots, X_{n}$,

$$
\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

Because: $\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}\right]$

$$
=\mathbb{E}\left[X_{1}+\cdots+X_{n-1}\right]+\mathbb{E}\left[X_{n}\right]=\cdots
$$

## Linearity of Expectation - Proof

Theorem. For any two random variables $X$ and $Y$
( $X, Y$ do not need to be independent)

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] .
$$



## Using LOE to compute complicated expectations

Often boils down to the following three steps:

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables
- LOE: Apply linearity of expectation. In

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

- Conquer: Compute the expectation of each $X_{i}$

Often, $X_{i}$ are indicator (o/1) random variables.

## Indicator random variables - 0/1 valued

For any event $A$, can define the indicator random variable $X_{A}$ for $A$



$$
\begin{aligned}
E\left(X_{A}\right) & =0 \cdot P\left(X_{A}=0\right)+1 \cdot p\left(X_{A}=1\right) \\
& =P A
\end{aligned}
$$

