
CSE 312

Foundations of Computing II
Lecture 7: More on independence; start random variables
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Announcement:  Concept check break this weekend!



Agenda

• Recap
• Sometimes Independence Occurs for Nonobvious Reasons
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸!, 𝐸", … , 𝐸# be a partition of the 
sample space, and 𝐹, 𝐺 events. Then,

𝑃 𝐺 𝐹) =
𝑃 𝐹 𝐺 𝑃(𝐺)

𝑃(𝐹)
=

𝑃 𝐹 𝐺 𝑃(𝐺)
∑$%!# 𝑃 𝐹 𝐸$ 𝑃 𝐸$

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐺 𝐹) =
𝑃 𝐹 𝐺 𝑃(𝐺)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸& 𝑃(𝐸&)
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Chain Rule
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ
ℙ 𝒜

ℙ 𝒜 ℙ ℬ 𝒜 = ℙ 𝒜 ∩ ℬ

Theorem. (Chain Rule) For events 𝒜!, 𝒜", … ,𝒜# , 

ℙ 𝒜! ∩ ⋯∩𝒜# = ℙ 𝒜! ⋅ ℙ 𝒜" 𝒜! ⋅ ℙ(𝒜'|𝒜! ∩ 𝒜")

⋯ℙ(𝒜#|𝒜! ∩ 𝒜" ∩ ⋯∩𝒜#(!)

An easy way to remember: We have n events and we can evaluate their 
probabilities sequentially, conditioning on the occurrence of previous events.



Independence
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Alternatively,
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are (statistically) independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

“The probability that ℬ occurs after observing 𝒜” -- Posterior
=  “The probability that ℬ occurs” -- Prior  



Agenda

• Recap
• Sometimes Independence Isn’t Obvious
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Sequential Process
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R
3/5

1/10

1/2
3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability   3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

3/4

1/4
3/10

5R7B
Are R and 3R3B independent? 

5/12 7/12



Sequential Process
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R
3/5

1/10

3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability 3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12 7/12
𝑃 R =

3
5
×
1
2
+
1
10
×
3
4
+
3
10
×
5
12

=
1
2

Independent! 𝑃 R = 𝑃 R | 3R3B

𝑃 R | 3R3B = &
'

Urn

Ball drawn



Agenda

• Recap
• Sometimes Independence Occurs for Nonobvious Reasons
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?

10

𝐴 : event that the main chute doesn’t open ℙ 𝐴 = 0.02
𝐵 : event that the backup doesn’t open ℙ 𝐵 = 0.1



Independence as an assumption

● People often assume it without justification.
● Example: A sky diver has two chutes

● What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption! Both chutes could fail 
because of the same rare event e.g., freezing rain.
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𝐴 : event that the main chute doesn’t open ℙ 𝐴 = 0.02
𝐵 : event that the backup doesn’t open ℙ 𝐵 = 0.1



Corollaries of independence of two events

● Example: A sky diver has two chutes

● What is the chance that both open assuming independence?
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𝐴 : event that the main chute doesn’t open ℙ 𝐴 = 0.02
𝐵 : event that the backup doesn’t open ℙ 𝐵 = 0.1



Agenda

• Recap
• Sometimes Independence Occurs for Nonobvious Reasons
• Independence As An Assumption
• Conditional Independence

• New Topic: Random Variables
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Plain Independence. Two events 𝒜 and ℬ are independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

Conditional Independence
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Equivalence:
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are independent conditioned on 𝐶 if
ℙ 𝐶 ≠ 0 and ℙ 𝒜 ∩ ℬ | 𝐶 = ℙ 𝒜 | 𝐶 ⋅ ℙ ℬ 𝐶).



Conditional Independence
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Equivalence:
• If ℙ 𝒜 ∩ 𝐶 ≠ 0, equivalent to ℙ ℬ 𝒜 ∩ 𝐶 = ℙ 𝐵 | 𝐶
• If ℙ ℬ ∩ 𝐶 ≠ 0, equivalent to ℙ 𝒜 ℬ ∩ 𝐶 = ℙ 𝒜 | 𝐶

Definition. Two events 𝒜 and ℬ are independent conditioned on 𝐶 if
ℙ 𝐶 ≠ 0 and ℙ 𝒜 ∩ ℬ | 𝐶 = ℙ 𝒜 | 𝐶 ⋅ ℙ ℬ 𝐶).



Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin twice independently. What is the probability both tosses heads?

Pr(𝐻𝐻) = Pr(𝐻𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻𝐻 | 𝐶2) Pr(𝐶2) LTP



Example – More coin tossing
Suppose there is a coin C1 with Pr(Head) = 0.3 and a coin C2 with 
Pr(Head) = 0.9. We pick one randomly with equal probability and flip that 
coin 2 times independently. What is the probability we get all heads?

Pr(𝐻𝐻) = Pr(𝐻𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻𝐻 | 𝐶2) Pr(𝐶2)

= Pr(𝐻 𝐶2 'Pr(𝐶1) + Pr(𝐻 𝐶2 ' Pr(𝐶2)

= 0.3' ⋅ 0.5 + 0.9' ⋅ 0.5 = 0.45

LTP

Conditional Independence

Pr(𝐻) = Pr(𝐻 | 𝐶1) Pr(𝐶1) + Pr(𝐻 𝐶2 Pr 𝐶2 = 0.6



New topic:  random variables

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
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Random Variables (Idea)

Often: We want to capture quantitative properties of the 
outcome of a random experiment, e.g.:
– What is the total of two dice rolls?
– What is the number of coin tosses needed to see the first head?
– What is the number of heads among 5 coin tosses?
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Random Variables

Definition. A random variable (RV) for a probability space 
(Ω, ℙ) is a function 𝑋: Ω → ℝ.

The set of values that 𝑋 can take on is called its range/support Ω)

20

Example. Number of heads in 2 independent coin flips Ω = {HH, HT, TH, TT}



RV Example

20 balls labeled 1, 2, …, 20 in an urn
– Draw a subset of 3 uniformly at random
– Let 𝑋 = maximum of the 3 numbers on the balls

• Example: 𝑋 2, 7, 5 = 7
• Example: 𝑋 15, 3, 8 = 15

– What is |Ω(| ?
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Agenda

• Random Variables
• Probability Mass Function (pmf)
• Cumulative Distribution Function (CDF)
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Probability Mass Function (PMF)

24

Ω

𝑋 𝜔 = 𝑥!

𝑋 𝜔 = 𝑥"

𝑋 𝜔 = 𝑥#

𝑋 𝜔 = 𝑥$

Random variables partition
the sample space.

Example: 20 balls labeled 1, 2, …, 20 in a bin
Draw a subset of 3 uniformly at random
Let 𝑋 = maximum of the 3 numbers on the balls



Probability Mass Function (PMF)
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Ω

𝑋 𝜔 = 𝑥!

𝑋 𝜔 = 𝑥"

𝑋 𝜔 = 𝑥#

𝑋 𝜔 = 𝑥$

Definition. For a RV 𝑋: Ω → ℝ, we define the event 

𝑋 = 𝑥 ≝ 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥}



Probability Mass Function (PMF)
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Ω

𝑋 𝜔 = 𝑥!

𝑋 𝜔 = 𝑥"

𝑋 𝜔 = 𝑥#

𝑋 𝜔 = 𝑥$

Definition. For a RV 𝑋: Ω → ℝ, we define the event 

𝑋 = 𝑥 ≝ 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥}
We write ℙ 𝑋 = 𝑥 = ℙ 𝑋 = 𝑥 = ℙ( 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥}) where 
ℙ 𝑋 = 𝑥 is the probability mass function (PMF) of 𝑋

2
*∈,!

ℙ 𝑋 = 𝑥 = 1



Probability Mass Function (PMF)
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Definition. For a RV 𝑋: Ω → ℝ, we define the event 

𝑋 = 𝑥 ≝ 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥}
We write ℙ 𝑋 = 𝑥 = ℙ 𝑋 = 𝑥 = ℙ( 𝜔 ∈ Ω 𝑋 𝜔 = 𝑥}) where 
ℙ 𝑋 = 𝑥 is the probability mass function (PMF) of 𝑋

You also see this 
notation (e.g. in 
book): 

ℙ 𝑿 = 𝒙 = 𝒑𝑿(𝒙)



Probability Mass Function

Flipping two independent coins

𝑋 = number of heads in the two Glips
𝑋 𝐻𝐻 = 2 𝑋 𝐻𝑇 = 1 𝑋 𝑇𝐻 = 1 𝑋 𝑇𝑇 = 0

What is 𝑃𝑟 𝑋 = 𝑘 ? 

28

Ω = {HH, HT, TH, TT}

Ω( = {0, 1, 2}



Probability Mass Function

Flipping two independent coins

𝑋 = number of heads in the two Glips
𝑋 𝐻𝐻 = 2 𝑋 𝐻𝑇 = 1 𝑋 𝑇𝐻 = 1 𝑋 𝑇𝑇 = 0
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Ω = {HH, HT, TH, TT}

Ω( = {0, 1, 2}

Pr 𝑋 = 𝑥 =

1
4 , 𝑥 = 0
1
2 , 𝑥 = 1
1
4
, 𝑥 = 2

0, 𝑜. 𝑤.



RV Example

20 balls labeled 1, 2, …, 20 in an urn
– Draw a subset of 3 uniformly at random
– Let 𝑋 = maximum of the 3 numbers on the balls

What is 𝑃𝑟(𝑋 = 20)?
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Agenda

• Random Variables
• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
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Cumulative Distribution Function (CDF)

Definition. For a RV 𝑋: Ω → ℝ, the cumulative distribution function of 
𝑋 specifies for any real number 𝑥, the probability that 𝑋 ≤ 𝑥.

F4 𝑥 = Pr(𝑋 ≤ 𝑥)

33

Go back to 2 coin flips, where 𝑋 is the number of heads

Pr 𝑋 = 𝑥 =

1
4 , 𝑥 = 0
1
2 , 𝑥 = 1
1
4
, 𝑥 = 2

0, 𝑜. 𝑤.



Cumulative Distribution Function (CDF)

Definition. For a RV 𝑋: Ω → ℝ, the cumulative distribution function of 
where 𝑋 specifies for any real number 𝑥, the probability that 𝑋 ≤ 𝑥.

F4 𝑥 = Pr(𝑋 ≤ 𝑥)
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Go back to 2 coin clips, where 𝑋 is the number of heads

𝐹! 𝑥 =

0, 𝑥 < 0
1
4
, 0 ≤ 𝑥 < 1

3
4 , 1 ≤ 𝑥 < 2
1, 2 ≤ 𝑥

Pr 𝑋 = 𝑥 =

1
4 , 𝑥 = 0
1
2
, 𝑥 = 1

1
4 , 𝑥 = 2



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks. All 
permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)
1/6 1, 2, 3

1/6 1, 3, 2

1/6 2, 1, 3

1/6 2, 3, 1

1/6 3, 1, 2

1/6 3, 2, 1
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If time permits….

37



Often probability space Ω, 𝑃 is given implicitly via sequential 
process
• Experiment proceeds in 𝑛 sequential steps, each step follows 

some local rules defined by the chain rule and independence
• Natural extension: Allows for easy definition of experiments 

where Ω = ∞
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Example – Throwing A Die Repeatedly
Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

If it shows 1, 2 → Alice wins.
If it shows 3 → Bob wins.
Otherwise, play another round

What is Pr(Alice wins on 1st round) =  
Pr(Alice wins on 2st round) =
…
Pr(Alice wins on 𝑖th round) = ?
Pr(Alice wins) = ?



Sequential Process – defined in terms of independence

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

40

Local Rules: In each round, toss 
a die 
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round

𝒊𝟏𝟐 = 𝑖 th round toss 1 or 2

𝒊𝟑 = 𝑖 th round toss 3

1/3

1/6

1/2 𝒊𝟒𝟓𝟔 = 𝑖 th round toss 4 or 5 or 6

Pr (Alice wins on 𝑖 -th round | nobody won in rounds 1. . 𝑖-1) = 1/3



Sequential Process – Example
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𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

1/3

1/6

1/2

1/3

1/6

1/2 …

𝒜!

𝒜"

𝒜'

𝒜1
𝒩!

𝒩"

𝒩'

𝒩1

Events:
• 𝒜9 = Alice wins in round 𝑖
• 𝒩9 = nobody wins in round 𝑖

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔

Local Rules: In each round
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round



Sequential Process – Example 
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Events:
• 𝒜9 = Alice wins in round 𝑖
• 𝒩9 = nobody wins in rounds 1..𝑖

ℙ 𝒩! ∩ 𝒜"=

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

𝒜!

𝒜"

𝒩!

𝒩"

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔

2nd roll indep of 1st roll

ℙ 𝒜"



Sequential Process – Example 
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Events:
• 𝒜9 = Alice wins in round 𝑖
• 𝒩9 = nobody wins in rounds 1..𝑖

= 𝒫(𝒩!)×𝒫(𝒜"|𝒩!)
ℙ 𝒜" = 𝒫(𝒩! ∩ 𝒜")

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

𝒜!

𝒜"

𝒩!

𝒩"

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔
=
1
2
×
1
3
=
1
6

The event 𝒜' implies 𝒩&, and 
this means that 𝒜' ∩𝒩& = 𝒜'

2nd roll indep of 1st roll



Sequential Process – Example 

Events:
• 𝒜9 = Alice wins in round 𝑖
• 𝒩9 = nobody wins in rounds 1. . 𝑖

ℙ 𝒜$ = 𝒫(𝒩! ∩𝒩" ∩ ⋯∩𝒩$(! ∩ 𝒜$)

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2 1/3

1/6

1/2

𝒜!

𝒜$

𝒩!

𝒩$

𝟏𝟒𝟓𝟔 𝒊𝟏𝟐
𝒊𝟑

𝒊𝟒𝟓𝟔

⋯⋯



Sequential Process – Example 
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Events:
• 𝒜9 = Alice wins in round 𝑖
• 𝒩9 = nobody wins in round 1. . 𝑖

ℙ 𝒜$ = 𝒫(𝒩! ∩𝒩" ∩ ⋯∩𝒩$(! ∩ 𝒜$)

= 𝒫(𝒩!) ×𝒫(𝒩"|𝒩!)

=
1
2

$(!

×
1
3

×𝒫(𝒩'|𝒩! ∩𝒩")
⋯×𝒫(𝒩$(!|𝒩! ∩𝒩" ∩ ⋯∩𝒩$(!)×𝒫(𝒜$|𝒩! ∩𝒩" ∩ ⋯∩𝒩$(!)

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2 1/3

1/6

1/2

𝒜!

𝒜$

𝒩!

𝒩$

𝟏𝟒𝟓𝟔 𝒊𝟏𝟐
𝒊𝟑

𝒊𝟒𝟓𝟔

⋯⋯



Sequential Process -- Example
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𝒜1 = Alice wins in round 𝑖 ℙ 𝒜9 = !
"

#$!
× !
%

What is the probability that Alice wins?



Sequential Process -- Example
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𝒜1 = Alice wins in round 𝑖 ℙ 𝒜9 = !
"

#$!
× !
%

What is the probability that Alice wins?

ℙ 𝒜! ∪ 𝒜" ∪ ⋯ =

^
9:&

;
1
2

9<&

×
1
3 =

1
3
×2 =

2
3

Fact. If 𝑥 < 1, then ∑1234 𝑥1 = !
!56

. 

All 𝒜9’s are disjoint. Σ$%!5 ℙ 𝒜$


