## SSE 312 <br> Foundations of Computing II

Lecture 7: More on independence; start random variables

Announcement: Concept check break this weekend!

Anonymous Questions: www. slido.com/1891306

## Agenda

- Recap
- Sometimes Independence Occurs for Nonobvious Reasons
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables


## Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and $F, G$ events. Then,

$$
\frac{P(G \mid F)}{N}=\frac{P(F \mid G>P(G)}{P(F)}=\frac{P(F \mid G) P(G)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if $E$ is an event with non-zero probability, then

$$
P(G \mid F)=\frac{P(F \mid G) P(G)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

## Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\underset{\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)}{\mathbb{A}\left(\mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)} \begin{array}{r}
\cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
\end{array}
$$

An easy way to remember: We have $n$ events and we can evaluate their probabilities sequentially, conditioning on the occurrence of previous events.

## Independence

Definition. Two events $\mathcal{A}$ and $\mathcal{B}$ are (statistically) independent if

$$
\mathcal{A} \mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B) \quad \frac{P(A \cap B)}{P(A)}=P(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A}) \quad \frac{P(\Lambda \cap B)}{\rho(B)}=P(A)$
"The probability that $\mathcal{B}$ occurs after observing $\mathcal{A}$ " -- Posterior
= "The probability that $\mathcal{B}$ occurs" -- Prior


## Agenda

- Recap
- Sometimes Independence Isn't Obvious
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables


Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls $\mathrm{w} /$ probability 3/10

We draw a ball at random from the urn.

Are $R$ and $3 R 3 B$ independent?

$$
\begin{aligned}
& P(R)=P(3 R 3 B) P(R \mid 3 R 38)+P(R \mid 3 R 1 B) P(3 R B) \\
& \frac{L T}{\frac{1}{2}}+\begin{array}{c}
\frac{3}{2} \\
P(R \mid 3 R 3 B)=\frac{1}{2}
\end{array} \quad+P(R \mid 5 R 7 B) P(5 R 7 B) \\
& =\frac{1}{2}
\end{aligned}
$$

Sequential Process


Are R and 3R3B independent?

## Ball drawn

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls $w /$ probability 3/10 We draw a ball at random from the urn.

$$
P(\mathbf{R})=\frac{3}{5} \times \frac{1}{2}+\frac{1}{10} \times \frac{3}{4}+\frac{3}{10} \times \frac{5}{12}=\frac{1}{2}
$$

$$
P(R \mid 3 R 3 B)=\frac{1}{2}
$$

## Agenda

- Recap
- Sometimes Independence Occurs for Nonobvious Reasons
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables

Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
$A$ : event that the main chute doesn't open
$B$ : event that the backup doesn't open

$$
\begin{aligned}
& \mathbb{P}(A)=0.02 \\
& \mathbb{P}(B)=0.1
\end{aligned}
$$

- What is the chance that at least one opens assuming independence?

$$
\begin{aligned}
1-P(A \cap B)=1-P(A) P(B) & =1-0.02 \cdot 0.1 \\
& =0.998
\end{aligned}
$$

## Independence as an assumption

- People often assume it without justification.
- Example: A sky diver has two chutes
$A$ : event that the main chute doesn't open
$\mathbb{P}(A)=0.02$
$B$ : event that the backup doesn't open
$\mathbb{P}(B)=0.1$
- What is the chance that at least one opens assuming independence?

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

Corollaries of independence of two events

$$
P(A \wedge B)=P(A) P(B)
$$

- Example: A sky diver has two chutes
$A$ : event that the main chute doesn't open

$$
B: \text { event that the backup doesn't open }
$$

$$
\begin{aligned}
& \mathbb{P}(A)=0.02 \\
& \mathbb{P}(B)=0.1
\end{aligned}
$$

- What is the chance that both open assuming independence? $A_{1} B_{\text {ind. }}$

$$
\begin{aligned}
& P r \mid \bar{A} \cap \bar{B}) \\
& =1-P(A \cup B) \\
& =1-(P(A)+P(B)-P(A \cap B)) \\
& =1-P(A)-P(B)+P(A) P(B) \\
& =(1-P(A))(1-P(B)) \\
& =P(\bar{A}) P(\bar{B})
\end{aligned}
$$

## Agenda

- Recap
- Sometimes Independence Occurs for Nonobvious Reasons
- Independence As An Assumption
- Conditional Independence
- New Topic: Random Variables


## Conditional Independence

Definition. Two events $\mathcal{A}$ and $\mathcal{B}$ are independent conditioned on $C$ if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Plain Independence. Two events $\mathcal{A}$ and $\mathcal{B}$ are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) .
$$

Equivalence:
valent $t \widehat{\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)}$

- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$


## Conditional Independence

Definition. Two events $\mathcal{A}$ and $\mathcal{B}$ are independent conditioned on $C$ if $\mathbb{P}(C) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C)$.

Equivalence:

- If $\mathbb{P}(\mathcal{A} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A} \cap C)=\mathbb{P}(B \mid C)$
- If $\mathbb{P}(\mathcal{B} \cap C) \neq 0$, equivalent to $\overline{\mathbb{P}(\mathcal{A} \mid \mathcal{B} \cap C)}=\mathbb{P}(\mathcal{A} \mid C)$

Example - More coin tossing

toss truce
bess truly
Suppose there is a coin $\mathrm{C}_{1}$ with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin twice independently. What is the probability both tosses heads?

$$
\begin{aligned}
& \text { U }\left\{\begin{array}{l}
P\left(H H \mid C_{1}\right)=P\left(H \mid C_{1}\right) P\left(H \mid C_{1}\right) \\
P\left(H H \mid C_{2}\right)=P\left(H_{1} \mid C_{2}\right) P\left(H \mid C_{2}\right.
\end{array}\right. \\
& \operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2) \quad \text { LT } \\
& \text { LoP } \\
& \text { CF. } 0.3 \cdot 0.3 \cdot \frac{1}{2}+0.9 \cdot 0.9 \cdot \frac{1}{2}=0.445
\end{aligned}
$$

$$
P\left(H_{H_{4}} T_{1}\right)=P P\left(H_{1}\right) P P\left(H_{2}\right) P\left(T_{3}\right)
$$

## Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$
\begin{aligned}
& \operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2) \\
& =\underbrace{\operatorname{Pr}(H \mid C)^{2} \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 2) \quad \text { Conditional Independence }} \\
& =0.3^{2} \cdot 0.5+0.9^{2} \cdot 0.5=0.45 \\
& \stackrel{\text { ornost }}{\substack{\text { (H) } \\
\\
\text { ) }}}=\frac{\operatorname{Pr}(H \mid C 1) \operatorname{Pr}(C 1)}{0.3} \frac{\operatorname{Pr}(H \mid C 2)}{\frac{\operatorname{Pr}}{2}} \frac{\operatorname{Pr}(C 2)}{\frac{1}{2}}=0.6 \\
& P\left(H^{\sim}-\alpha_{0}\right)=0.6
\end{aligned}
$$

## $P\left(H_{2} H_{2}\right) \neq P\left(H_{1}\right) P\left(H_{2}\right)$

New topic: random variables

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)


## Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 5 coin tosses?


## Random Variables

Definition. A random variable (RV) for a probability space $(\Omega, \mathbb{P})$ is a function $X: \Omega \rightarrow \mathbb{R}$.


The set of values that $X$ can take on is called its range/support $\Omega_{\mathrm{X}}$
Example. Number of heads in 2 independent coin flips $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$


RV Example

20 balls labeled 1, 2, ..., 20 in an urn

- Draw a subset of 3 uniformly at random
$\Omega=\operatorname{call}_{\text {chin }}$ possible 3 ale (under end
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7 \quad X(135)=5$
- Example: $X(\underbrace{15,3,8)}=15$

$$
|\Omega|=\binom{20}{3}
$$

- What is $\underbrace{\left|\Omega_{\mathrm{X}}\right|}$ ?

$$
\left|\Omega_{x}\right|=18
$$

## Agenda

- Random Variables
- Probability Mass Function (pmf)
- Cumulative Distribution Function (CDF)


## Probability Mass Function (PMF)



Random variables partition the sample space.

$$
\begin{aligned}
& \text { event } \\
& x=4
\end{aligned}
$$

$$
=\{(124)(134)(234)\} \quad x(\omega)=x_{2}, \Omega
$$

Example: 20 balls labeled $1,2, \ldots, 20$ in a bin
Draw a subset of 3 uniformly at random
Let $X=$ maximum of the 3 numbers on the balls

## Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega)=x\}
$$



## Probability Mass Function (PMF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \xlongequal{\text { def }}\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \hat{\in}|=\Omega| X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of $X$

$$
\sum_{x \in \Omega_{X}} \mathbb{P}(X=x)=1
$$

$$
X(\omega)=x_{1}
$$

$$
X(\omega)=x_{3}
$$

$$
X(\omega)=x_{2}
$$

## Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \stackrel{\text { def }}{=}\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of $X$

## You also see this notation (e.g. in book):



$$
\mathbb{P}(X=x)=p_{X}(x)
$$

$$
p<=
$$

$$
P(H)=\frac{1}{2}
$$

Probability Mass Function

Flipping two independent coins

$\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$X=$ number of heads in the two flips

$$
\begin{array}{r}
X(H H)=2 \quad X(H T)=1 \quad X(T H)=1 \quad X(T T)=0 \\
\Omega_{\mathrm{X}}=\{0,1,2\}
\end{array}
$$

What is $\operatorname{Pr}(X=k)$ ?

$$
P(\underline{x=k})=\left\{\begin{array}{l}
\frac{1}{4} \\
\frac{1}{2} \\
\frac{1}{4} \\
0
\end{array}\right.
$$

$$
\begin{gathered}
P(x=0.5)=0 \\
{ }^{28}
\end{gathered}
$$

## Probability Mass Function

Flipping two independent coins

$$
\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$X=$ number of heads in the two flips

$$
\begin{gathered}
X(H H)=2 \quad X(H T)=1 \quad X(T H)=1 \quad X(T T)=0 \\
\Omega_{\mathrm{X}}=\{0,1,2\}
\end{gathered}
$$

RV Example

20 balls labeled $1,2, \ldots, 20$ in an urn

- Draw a subset of 3 uniformly at random

$$
P(\omega)=\frac{1}{\binom{20}{3}}
$$

- Let $X=$ maximum of the 3 numbers on the balls

What is $\operatorname{Pr}(X=20)$ ?

$$
\left.\begin{array}{rl}
P(X & =20)
\end{array}=\operatorname{Pr}(\{\omega) \text { max y bulls in } w \text { is } 20\}\right)
$$

## Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)


## Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of $X$ specifies for any real number $x$, the probability that $X \leq x$.


Go back to 2 coin flips, where $X$ is the number of heads

$$
\operatorname{Pr}(X=x)=\left\{\begin{array}{lc}
\frac{1}{4}, & x=0 \\
\frac{1}{2}, & x=1 \\
\frac{1}{4}, & x=2 \\
0, & \text { o.w. }
\end{array}\right.
$$



## Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where $X$ specifies for any real number $x$, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where $X$ is the number of heads

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=\left\{\begin{array}{ll}
\frac{1}{4}, & x=0 \\
\frac{1}{2}, & x=1 \\
\frac{1}{4}, & x=2
\end{array} \quad F_{X}(x)=\left\{\begin{array}{lr}
0, & \frac{x<0}{x}, \\
\frac{1}{4}, & 0 \leq x<1 \\
\frac{3}{4}, & 1 \leq x<2 \\
1, & 2 \leq x
\end{array}\right.\right.
\end{aligned}
$$

## Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let $X$ be the number of students who get their own HW

| $\operatorname{Pr}(\omega)$ | $\omega$ | $X(\omega)$ |
| :---: | :---: | :---: |
| $1 / 6$ | $1,2,3$ |  |
| $1 / 6$ | $1,3,2$ |  |
| $1 / 6$ | $2,1,3$ |  |
| $1 / 6$ | $2,3,1$ |  |
| $1 / 6$ | $3,1,2$ |  |
| $1 / 6$ | $3,2,1$ |  |



If time permits....

Often probability space $(\Omega, P)$ is given implicitly via sequential process

- Experiment proceeds in $n$ sequential steps, each step follows some local rules defined by the chain rule and independence
- Natural extension: Allows for easy definition of experiments where $|\Omega|=\infty$


## Example - Throwing A Die Repeatedly

Alice and Bob are playing the following game.
A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

If it shows $1,2 \rightarrow$ Alice wins.
If it shows $3 \rightarrow$ Bob wins.
Otherwise, play another round
What is $\operatorname{Pr}\left(\right.$ Alice wins on $1^{\text {st }}$ round $)=$ $\operatorname{Pr}\left(\right.$ Alice wins on $2^{\text {st }}$ round $)=$ $\operatorname{Pr}\left(\right.$ Alice wins on $i^{\text {th }}$ round $)=$ ? $\operatorname{Pr}($ Alice wins $)=$ ?

## Sequential Process - defined in terms of independence

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

Local Rules: In each round, toss a die

- If it shows $1,2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow$ Bob wins
- Else, play another round
$\operatorname{Pr}($ Alice wins on $i$ th round $\mid$ nobody won in rounds $1 . . i-1)=1 / 3$


## Sequential Process - Example



$\mathcal{A}_{2}$

Local Rules: In each round

- If it shows $1,2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow$ Bob wins
- Else, play another round


## Events:

- $\mathcal{A}_{i}=$ Alice wins in round $i$
- $\mathcal{N}_{i}=$ nobody wins in round $i$



## Sequential Process - Example

## Events:

- $\mathcal{A}_{i}=$ Alice wins in round $i$

$\mathbb{P}\left(\mathcal{A}_{2}\right)=\mathbb{P}\left(\mathcal{N}_{1} \cap \mathcal{A}_{2}\right)$

$$
\mathcal{N}_{2}
$$

$2^{\text {nd }}$ roll indep of $1^{\text {st }}$ roll

## Sequential Process - Example

## Events:

- $\mathcal{A}_{i}=$ Alice wins in round $i$
- $\mathcal{N}_{i}=$ nobody wins in rounds $1 . . i$

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{A}_{2}\right) & =\mathcal{P}\left(\mathcal{N}_{1} \cap \mathcal{A}_{2}\right) \\
& =\mathcal{P}\left(\mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{A}_{2} \mid \mathcal{N}_{1}\right) \\
& =\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
\end{aligned}
$$



The event $\mathcal{A}_{2}$ implies $\mathcal{N}_{1}$, and this means that $\mathcal{A}_{2} \cap \mathcal{N}_{1}=\mathcal{A}_{2}$ $2^{\text {nd }}$ roll indep of $1^{\text {st }}$ roll


## Sequential Process - Example



$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{A}_{i}\right)=\mathcal{P}\left(\mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1} \cap \mathcal{A}_{i}\right) \\
& =\mathcal{P}\left(\mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{N}_{2} \mid \mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{N}_{3} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2}\right) \\
& \quad \cdots \times \mathcal{P}\left(\mathcal{N}_{i-1} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1}\right) \times \mathcal{P}\left(\mathcal{A}_{i} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1}\right) \\
& \quad=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}
\end{aligned}
$$

## Sequential Process -- Example

$\mathcal{A}_{i}=$ Alice wins in round $i \quad \mathbb{P}\left(\mathcal{A}_{i}\right)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$
What is the probability that Alice wins?

## Sequential Process -- Example

$\mathcal{A}_{i}=$ Alice wins in round $i \quad \mathbb{P}\left(\mathcal{A}_{i}\right)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$
What is the probability that Alice wins?

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots\right)=\Sigma_{i=1}^{\infty} \mathbb{P}\left(\mathcal{A}_{i}\right) \\
& \sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}=\frac{1}{3} \times 2=\frac{2}{3}
\end{aligned}
$$

$$
\text { All } \mathcal{A}_{i} \text { 's are disjoint. }
$$

$$
\text { Fact. If }|x|<1 \text {, then } \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} .
$$

