
CSE 312

Foundations of Computing II
Lecture 6: Chain Rule and Independence
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• Section tomorrow is important with new content that you 
will need on pset 3.  Bring your laptops.

• Anonymous questions:           www.slido.com/1891306

Announcements



Agenda

• Recap
• Chain Rule
• Independence
• Conditional independence
• Infinite process
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Review Conditional & Total Probabilities 

• Conditional Probability

• Bayes Theorem

• Law of Total Probability
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𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐴

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐹 ='
!"#

$

𝑃 𝐹 ∩ 𝐸! ='
!"#

$

𝑃 𝐹 𝐸! 𝑃(𝐸!)

if 𝑃 𝐴 ≠ 0, 𝑃 𝐵 ≠ 0

𝐸#, … , 𝐸$ partition Ω



Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let 𝐸!, 𝐸", … , 𝐸# be a partition of the 
sample space, and 𝐹 and event. Then,

𝑃 𝐸! 𝐹) =
𝑃 𝐹 𝐸! 𝑃(𝐸!)

𝑃(𝐹)
=

𝑃 𝐹 𝐸! 𝑃 𝐸!
∑$%!# 𝑃 𝐹 𝐸$ 𝑃 𝐸$

Simple Partition: In particular, if 𝐸 is an event with non-zero 
probability, then 

𝑃 𝐸 𝐹) =
𝑃 𝐹 𝐸 𝑃(𝐸)

𝑃 𝐹 𝐸 𝑃 𝐸 + 𝑃 𝐹 𝐸& 𝑃(𝐸&)
7



Example – Zika Testing

This example and following slides are from Lisa Yan (Stanford). 8

Usually no or mild symptoms (rash); sometimes 
severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns 
“positive”, what is the likelihood that you 
actually have the disease?

• Tests for diseases are rarely 100% accurate.



Example – Zika Testing

Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you have Zika (event 𝑍) given that you test positive (event 𝑇)?

Last time:

How? 
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𝑃 𝑇 𝑍 = 0.98
𝑃(𝑇|𝑍%)=0.01

𝑃(𝑍)=0.005

𝑃 𝑍 𝑇 = 0.33

By Bayes Rule, 𝑃 𝑍 𝑇 = 𝑃 𝑇 𝑍 𝑃(𝑍)
𝑃(𝑇)

By the Law of Total Probability, 𝑃 𝑇 = 𝑃 𝑇 𝑍 𝑃 𝑍 + 𝑃 𝑇 𝑍% 𝑃(𝑍%)



Philosophy – Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed significantly

Z = you have Zika
T = you test positive for Zika

11
Prior: P(Z)

I have a 0.5% chance 
of having Zika

Posterior: P(Z|T)

I now have a 33% 
chance of having Zika 

after the test.
Receive positive 

test result



Example – Zika Testing
What is the probability you have Zika (event Z) given that you test positive (event T).
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Suppose we had 1000 people:
• 5 have Zika and all test positive
• 985 do not have Zika and test negative
• 10 do not have Zika and test positive

Have zika blue, don’t pink



Example – Zika Testing
Picture below gives us the following Zika stats

– A test is 100% effective at detecting Zika (“true positive”). 
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.  5% have it.

What is the probability you have Zika (event Z) given that you test positive (event T)?
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Suppose we had 1000 people:
• 5 have Zika and all test positive
• 985 do not have Zika and test negative
• 10 do not have Zika and test positive

Have zika blue, don’t pink

𝑃 𝑇 𝑍 = 5/5 = 1
𝑃 𝑇 𝑍% = 10/995

𝑃 𝑍 =
995
1000

= 0.005



Example – Zika Testing
Picture below gives us the following Zika stats

– A test is 100% effective at detecting Zika (“true positive”). 
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.  5% have it.

What is the probability you have Zika (event Z) given that you test positive (event T)?
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Suppose we had 1000 people:
• 5 have Zika and and test positive
• 985 do not have Zika and test negative
• 10 do not have Zika and test positive

5
5 + 10

=
1
3
≈ 0.33

Have zika blue, don’t pink

𝑃 𝑇 𝑍 = 5/5 = 1
𝑃 𝑇 𝑍% = 10/995

𝑃 𝑍 =
995
1000

= 0.005



Suppose we know the following Zika stats
– A test is 98% effective at detecting Zika (“true positive”)
– However, the test may yield a “false positive” 1% of the time
– 0.5% of the US population has Zika.

What is the probability you test negative (event 𝑇%) give you have Zika (event 𝑍)?

15

𝑃(𝑇|𝑍)= 0.98
𝑃(𝑇|𝑍%)= 0.01

𝑃 𝑍 = 0.005

𝑃 𝑇) 𝑍 = 1 − 𝑃 𝑇 𝑍 = 0.02



Conditional Probability Define a Probability Space

16

The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.

Example. ℙ ℬ) 𝒜 = 1 − ℙ(ℬ|𝒜)



Conditional Probability Define a Probability Space
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The probability conditioned on 𝐴 follows the same properties as 
(unconditional) probability.

Example. ℙ ℬ) 𝒜 = 1 − ℙ(ℬ|𝒜)

Formally. (Ω, ℙ) is a probability space + ℙ 𝒜 > 0

(𝒜,ℙ(⋅ |𝒜)) is a probability space



Agenda

• Recap
• Chain Rule
• Independence
• Conditional independence
• Infinite process
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Chain Rule

20

ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ
ℙ 𝒜

ℙ 𝒜 ℙ ℬ 𝒜 = ℙ 𝒜 ∩ ℬ



Chain Rule
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ℙ ℬ 𝒜 =
ℙ 𝒜 ∩ ℬ
ℙ 𝒜

ℙ 𝒜 ℙ ℬ 𝒜 = ℙ 𝒜 ∩ ℬ

Theorem. (Chain Rule) For events 𝒜!, 𝒜", … ,𝒜# , 

ℙ 𝒜! ∩ ⋯∩𝒜# = ℙ 𝒜! ⋅ ℙ 𝒜" 𝒜! ⋅ ℙ(𝒜'|𝒜! ∩ 𝒜")

⋯ℙ(𝒜#|𝒜! ∩ 𝒜" ∩ ⋯∩𝒜#(!)

An easy way to remember: We have n tasks and we can do them sequentially, 
conditioning on the outcome of previous tasks



Chain Rule Example 

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 
cards in order. (uniform probability space).

What is P ( ) = P(A ∩ B ∩ C)?

A: Ace of Spades First
B:  10 of Clubs Second
C: 4 of Diamonds Third



Chain Rule Example 

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 
cards in order. (uniform probability space).

What is P ( ) = P(A ∩ B ∩ C)?

A: Ace of Spades First
B:  10 of Clubs Second
C: 4 of Diamonds Thirdℙ 𝐴 ⋅ ℙ 𝐵 𝐴 ⋅ ℙ 𝐶 𝐴 ∩ 𝐵

1
52

⋅
1
51

⋅
1
50



Agenda

• Recap
• Chain Rule
• Independence
• Conditional independence
• Infinite process

24



Independence

25

Alternatively,
• If ℙ 𝒜 ≠ 0, equivalent to ℙ ℬ 𝒜 = ℙ 𝐵
• If ℙ ℬ ≠ 0, equivalent to ℙ 𝒜 ℬ = ℙ 𝒜

Definition. Two events 𝒜 and ℬ are (statistically) independent if

ℙ 𝒜 ∩ ℬ = ℙ 𝒜 ⋅ ℙ(ℬ).

“The probability that ℬ occurs after observing 𝒜” -- Posterior
=  “The probability that ℬ occurs” -- Prior  



Example -- Independence

27

Toss a coin 3 times. Each of 8 outcomes equally likely. 
• A = {at most one T} = {HHH, HHT, HTH, THH}
• B = {at most 2 Heads}= {HHH}c

Independent?
ℙ 𝒜 ∩ℬ = ℙ 𝒜 ⋅ ℙ(ℬ)?



Multiple Events – Mutual Independence

28

Definition. Events 𝐴*, … , 𝐴+ are mutually independent if for every 
non-empty subset 𝐼 ⊆ {1, … , 𝑛}, we have

𝑃 =
,∈.

𝐴, =>
,∈.

𝑃(𝐴,) .



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

Each link works with the probability given, independently

𝐴 𝐵
𝐶 𝐷

i.e., mutually independent 
events 𝐴, 𝐵, 𝐶, 𝐷 with

𝑃 𝐴 = 𝑝
𝑃 𝐵 = 𝑞
𝑃 𝐶 = 𝑟
𝑃 𝐷 = 𝑠



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

Each link works with the probability given, independently

𝐴 𝐵
𝐶 𝐷

i.e., mutually independent 
events 𝐴, 𝐵, 𝐶, 𝐷

What is 𝑃(1-4 connected)?

𝑃 𝐴 = 𝑝
𝑃 𝐵 = 𝑞
𝑃 𝐶 = 𝑟
𝑃 𝐷 = 𝑠



Example – Network Communication

1
2

3

4

𝑝

𝑟

𝑞

𝑠

If each link works with the probability given, independently:         
What’s the probability that nodes 1 and 4 can communicate? 

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃 𝐵 = 𝑝𝑞
𝑃 𝐶 ∩ 𝐷 = 𝑃 𝐶 ⋅ 𝑃 𝐷 = 𝑟𝑠 𝐴 𝐵

𝐶 𝐷

= 𝑃 𝐴 ∩ 𝐵) + 𝑃 (𝐶 ∩ 𝐷 − 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷)
𝑃 = 𝑃 𝐴 ∩ 𝐵 ∪ (𝐶 ∩ 𝐷)1-4 connected

𝑃 𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷
= 𝑃 𝐴 ⋅ 𝑃 𝐵 ⋅ 𝑃 𝐶 ⋅ 𝑃 𝐷 = 𝑝𝑞𝑟𝑠

𝑃 = 𝑝𝑞 + 𝑟𝑠 − 𝑝𝑞𝑟𝑠1-4 connected



Independence – Another Look
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Definition. Two events 𝐴 and 𝐵 are (statistically) independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

“Equivalently.” 𝑃 𝐴|𝐵 = 𝑃 𝐴 .

Events generated independently è their probabilities satisfy independence

But events can be independent without being generated by independent processes.

ç

This can be counterintuitive!



Sequential Process

33

R
3/5

1/10

1/2
3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability   3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

3/4

1/4
3/10

5R7B
Are R and 3R3B independent? 

5/12 7/12



Sequential Process

34

R
3/5

1/10

3R3B

3R1B B

Setting: An urn contains:
• 3 red and 3 blue balls w/ probability 3/5
• 3 red and 1 blue balls  w/ probability 1/10 
• 5 red and 7 blue balls  w/ probability 3/10 
We draw a ball at random from the urn.

1/2

1/2

3/4

1/4
3/10

5R7B

Are R and 3R3B independent? 

5/12 7/12
𝑃 R =

3
5
×
1
2
+
1
10
×
3
4
+
3
10
×
5
12

=
1
2

Independent! 𝑃 R = 𝑃 R | 3R3B

𝑃 R | 3R3B = *
1

Urn

Ball drawn
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Often probability space Ω, ℙ is defined using independence
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Example – Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is 
independent of all other fips. Suppose it is tossed 3 times.

ℙ 𝐻𝐻𝐻 =

ℙ 𝑇𝑇𝑇 =

ℙ 𝐻𝑇𝑇 =



Example – Biased coin

We have a biased coin comes up Heads with probability 2/3, 
independently of other flips. Suppose it is tossed 3 times.

ℙ 2 ℎ𝑒𝑎𝑑𝑠 𝑖𝑛 3 𝑡𝑜𝑠𝑠𝑒𝑠 =



Agenda

• Recap
• Chain Rule
• Independence
• Conditional independence
• Infinite process
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Plain Independence. Two events 𝐴 and 𝐵 are independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 ⋅ 𝑃(𝐵).

Conditional Independence

41

• If 𝑃 𝐴 ≠ 0, equivalent to 𝑃 𝐵 𝐴 = 𝑃 𝐵
• If 𝑃 𝐵 ≠ 0, equivalent to 𝑃 𝐴 𝐵 = 𝑃 𝐴

• If 𝑃 𝐴 ∩ 𝐶 ≠ 0, equivalent to 𝑃 𝐵 𝐴 ∩ 𝐶 = 𝑃 𝐵 | 𝐶
• If 𝑃 𝐵 ∩ 𝐶 ≠ 0, equivalent to 𝑃 𝐴 𝐵 ∩ 𝐶 = 𝑃 𝐴 | 𝐶

Definition. Two events 𝐴 and 𝐵 are independent conditioned on 𝐶 if
𝑃 𝐶 ≠ 0 and 𝑃 𝐴 ∩ 𝐵 | 𝐶 = 𝑃 𝐴 | 𝐶 ⋅ 𝑃 𝐵 𝐶).



Example – Throwing Dice 

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9. 

We choose one coin randomly with equal probability and flip that coin 3 
times independently.   What is the probability we get all heads?

𝑃(𝐻𝐻𝐻) = 𝑃 𝐻𝐻𝐻 𝐶*) ⋅ 𝑃(𝐶*) + 𝑃(𝐻𝐻𝐻 𝐶1 ⋅ 𝑃(𝐶1)

= 𝑃 𝐻 𝐶* 2 𝑃(𝐶*) + 𝑃(𝐻 𝐶1 2 𝑃(𝐶1)

= 0.32 ⋅ 0.5 + 0.92 ⋅ 0.5 = 0.378

Law of Total Probability
(LTP)

Conditional Independence

𝐶! = coin 𝑖 was selected



Agenda

• Recap
• Chain Rule
• Independence
• Conditional independence
• Infinite process
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Often probability space Ω, 𝑃 is given implicitly via sequential 
process
• Experiment proceeds in 𝑛 sequential steps, each step follows 

some local rules defined by the chain rule and independence
• Natural extension: Allows for easy definition of experiments 

where Ω = ∞
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Example – Throwing A Die Repeatedly
Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

If it shows 1, 2 → Alice wins.
If it shows 3 → Bob wins.
Otherwise, play another round

What is Pr(Alice wins on 1st round) =  
Pr(Alice wins on 2st round) =
…
Pr(Alice wins on 𝑖th round) = ?
Pr(Alice wins) = ?



Sequential Process – defined in terms of independence

A 6-sided die is thrown, and each time it’s thrown, regardless of the 
history, it is equally likely to show any of the six numbers

46

Local Rules: In each round, toss 
a die 
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round

𝒊𝟏𝟐 = 𝑖 th round toss 1 or 2

𝒊𝟑 = 𝑖 th round toss 3

1/3

1/6

1/2 𝒊𝟒𝟓𝟔 = 𝑖 th round toss 4 or 5 or 6

Pr (Alice wins on 𝑖 -th round | nobody won in rounds 1. . 𝑖-1) = 1/3



Sequential Process – Example

47

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

1/3

1/6

1/2

1/3

1/6

1/2 …

𝒜!

𝒜"

𝒜'

𝒜,
𝒩!

𝒩"

𝒩'

𝒩,

Events:
• 𝒜, = Alice wins in round 𝑖
• 𝒩, = nobody wins in round 𝑖

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔

Local Rules: In each round
• If it shows 1,2 → Alice wins
• If it shows 3 → Bob wins
• Else, play another round



Sequential Process – Example 
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Events:
• 𝒜, = Alice wins in round 𝑖
• 𝒩, = nobody wins in rounds 1..𝑖

ℙ 𝒩! ∩ 𝒜"=

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

𝒜!

𝒜"

𝒩!

𝒩"

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔

2nd roll indep of 1st roll

ℙ 𝒜"



Sequential Process – Example 
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Events:
• 𝒜, = Alice wins in round 𝑖
• 𝒩, = nobody wins in rounds 1..𝑖

= 𝒫(𝒩!)×𝒫(𝒜"|𝒩!)
ℙ 𝒜" = 𝒫(𝒩! ∩ 𝒜")

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2

1/3

1/6

1/2

𝒜!

𝒜"

𝒩!

𝒩"

𝟏𝟒𝟓𝟔
𝟐𝟏𝟐
𝟐𝟑

𝟐𝟒𝟓𝟔
=
1
2
×
1
3
=
1
6

The event 𝒜1 implies 𝒩*, and 
this means that 𝒜1 ∩𝒩* = 𝒜1

2nd roll indep of 1st roll



Sequential Process – Example 

Events:
• 𝒜, = Alice wins in round 𝑖
• 𝒩, = nobody wins in rounds 1. . 𝑖

ℙ 𝒜$ = 𝒫(𝒩! ∩𝒩" ∩ ⋯∩𝒩$(! ∩ 𝒜$)

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2 1/3

1/6

1/2

𝒜!

𝒜$

𝒩!

𝒩$

𝟏𝟒𝟓𝟔 𝒊𝟏𝟐
𝒊𝟑

𝒊𝟒𝟓𝟔

⋯⋯



Sequential Process – Example 

51

Events:
• 𝒜, = Alice wins in round 𝑖
• 𝒩, = nobody wins in round 1. . 𝑖

ℙ 𝒜$ = 𝒫(𝒩! ∩𝒩" ∩ ⋯∩𝒩$(! ∩ 𝒜$)

= 𝒫(𝒩!) ×𝒫(𝒩"|𝒩!)

=
1
2

$(!

×
1
3

×𝒫(𝒩'|𝒩! ∩𝒩")
⋯×𝒫(𝒩$(!|𝒩! ∩𝒩" ∩ ⋯∩𝒩$(!)×𝒫(𝒜$|𝒩! ∩𝒩" ∩ ⋯∩𝒩$(!)

𝟏𝟏𝟐
𝟏𝟑

1/3

1/6

1/2 1/3

1/6

1/2

𝒜!

𝒜$

𝒩!

𝒩$

𝟏𝟒𝟓𝟔 𝒊𝟏𝟐
𝒊𝟑

𝒊𝟒𝟓𝟔

⋯⋯



Sequential Process -- Example
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𝒜! = Alice wins in round 𝑖 ℙ 𝒜, = !
"

#$!
× !
%

What is the probability that Alice wins?



Sequential Process -- Example
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𝒜! = Alice wins in round 𝑖 ℙ 𝒜, = !
"

#$!
× !
%

What is the probability that Alice wins?

ℙ 𝒜! ∪ 𝒜" ∪ ⋯ =

Y
,5*

6
1
2

,7*

×
1
3 =

1
3
×2 =

2
3

Fact. If 𝑥 < 1, then ∑!",- 𝑥! = #
#./

. 

All 𝒜,’s are disjoint. Σ$%!0 ℙ 𝒜$



Probability

Alex Tsun
Joshua Fan



Independence as an assumption

• People often assume it without justification

• Example:  A skydiver has two chutes

𝐴: event that the main chute doesn’t open         𝑃 𝐴 = 0.02
𝐵: event that the back-up doesn’t open               𝑃 𝐵 = 0.1

• What is the chance that at least one opens assuming independence?

Assuming independence doesn’t justify the assumption!    
Both chutes could fail because of the same rare event e.g., freezing rain.
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