CSE 312

Foundations of Computing II

Lecture 6: Chain Rule and Independence

Announcements

- Section tomorrow is important with new content that you will need on pset 3 . Bring your laptops.
- Anonymous questions: www.slido.com/1891306

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Review Conditional \& Total Probabilities

- Conditional Probability

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

- Bayes Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad \text { if } P(A) \neq 0, P(B) \neq 0
$$

$\begin{aligned} P(A \cap B) & =P(B \mid A) P(A) \\ & =P(A \mid B) P(B)\end{aligned}$

- Law of Total Probability

$$
E_{1}, \ldots, E_{n} \text { partition } \Omega
$$

$$
P(F)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Example - Zika Testing

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98\% effective at detecting Zika ("true positive") $\quad P(T \mid Z)=0.98$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{c}\right)=0.01$
- 0.5% of the US population has Zika. $P(Z)=0.005$

$$
P\left(z^{c}\right)=1-p(z)
$$

What is the probability you have Zika (event Z) given that you test positive (event T)?
Last time:

$$
P(Z \mid T)=0.33
$$

How?

$$
\text { By Bayes Rule, P(Z|T) }=\frac{P(T \mid Z) P(Z)}{P(T)}
$$

By the Law of Total Probability, $P(T)=P(T \mid Z) P(Z)+P\left(T \mid Z^{c}\right) P\left(Z^{c}\right)$

$$
P(T)+P\left(T^{2} \mid(2)=1\right.
$$

Philosophy - Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed significantly

Z = you have Zika
T = you test positive for Zika

Prior: $\mathrm{P}(\mathrm{Z})$

Posterior: $\mathrm{P}(\mathrm{Z} \mid \mathrm{T})$

Example - Zika Testing

Have zika blue, don't pink
What is the probability you have Zika (event Z) given that you test positive (event T).

$$
P(T / 2)=1
$$

Suppose we had 1000 people:

- 5 have Zika and all test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
P \int \rightarrow+\frac{10}{906+10}
$$

Example - Zika Testing

Picture below gives us the following Zika stats

- A test is 100% effective at detecting Zika ("true positive").
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika. 5% have it.

Have zika blue, don't pink

$$
P(T \mid Z)=5 / 5=1
$$

$$
P\left(T \mid Z^{c}\right)=10 / 995
$$

$$
P(Z)=\frac{995}{1000}=0.005
$$

\square

What is the probability you have Zika (event Z) given that you test positive (event T)?

Suppose we had 1000 people:

- 5 have Zika and all test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

Example - Zika Testing

Have zika blue, don't pink
Picture below gives us the following Zika stats

- A test is 100% effective at detecting Zika ("true positive"). $\quad P(T \mid Z)=5 / 5=1$
- However, the test may yield a "false positive" 1% of the time $\quad P\left(T \mid Z^{C}\right)=10 / 995$
- 0.5% of the US population has Zika. 5% have it.

$$
P(Z)=\frac{995}{1000}=0.005
$$

What is the probability you have Zika (event Z) given that you test positive (event T)?

Suppose we had 1000 people:

- 5 have Zika and and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\quad(P(T \mid Z)=0.98$
- However, the test may yield a "false positive" 1% of the time $P\left(T \mid Z^{C}\right)=0.01$
- 0.5% of the US population has Zika. $\quad P(Z)=0.005$

What is the probability you test negative (event T^{c}) give you have Zika (event Z)? PT(2)

$$
P\left(T^{c} \mid Z\right)=1-P(T \mid Z)=0.02
$$

Conditional Probability Define a Probability Space
The probability conditioned on A follows the same properties as (unconditional) probability.
Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid A\right]=1-\mathbb{P}(\mathcal{B} \mid A)$

$$
\begin{aligned}
& \left.P(B \mid A)+P\left(B^{C}\right) A\right) \\
& =\frac{P(B \cap A)}{P(A)}+\frac{P\left(B^{C} \cap A\right)}{P(A)} \\
& =\frac{P(B \cap A)+P\left(B^{C} \cap A\right)}{P(A)}=\frac{P(A)}{P(A)}=1
\end{aligned}
$$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space $+\mathbb{P}(\mathcal{A})>0$
$\longrightarrow(\mathcal{A}, \mathbb{P}(\cdot \mid \mathcal{A}))$ is a probability space

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

NOTE See Lecture 6 Megathread

Chain Rule
Infixed what's written on this slide often lecture

$$
\begin{aligned}
& \begin{array}{l}
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \\
\begin{array}{l}
P\left(A_{1} \cap A_{2} \cap A_{B}^{\left(A_{3}\right)}\right)
\end{array}=\underbrace{P\left(A_{1} \cap A_{2}\right)}_{P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right)} P\left(A_{3}|A, \mathcal{B}| \mathcal{A}\right)=\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \\
\\
=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right)^{20}
\end{array}
\end{aligned}
$$

But arden devout matter

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\mathbb{P}\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)=\mathbb{P}\left(\mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)
$$

$$
\cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example $\Omega=\{$ all gossibiuly
for fort 3 ends inorden\} ~
Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space). $\quad|\Omega|=52.51 \cdot 50$

$$
\begin{aligned}
& P(A) P(B \mid A) P(C \mid A \cap B) \quad P(B)=\frac{1}{52} \cdot \frac{1}{50} \cdot \frac{1}{51} \cdot \frac{10 f}{52} \text { Diamonds Third } \\
& =\frac{|B|}{52.51 .50}=\frac{51.50}{52.51 .50}
\end{aligned}
$$

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

$$
\text { B: } 10 \text { of Clubs Second }
$$

$$
\begin{gathered}
\mathbb{P}(A) \cdot \mathbb{P}(B \mid A) \cdot \mathbb{P}(C \mid A \cap B) \\
\frac{1}{52} \cdot \frac{1}{51} \cdot \frac{1}{50}
\end{gathered}
$$

$$
\text { C: } 4 \text { of Diamonds Third }
$$

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior
= "The probability that \mathcal{B} occurs" -- Prior

Example -- Independence

$$
|\Omega|=8
$$

Toss a coin 3 times. Each of 8 outcomes equally likely.

$$
\text { - } A=\{\text { at most one } T\}=\{H H H, \text { HUT, HTH,THH }\} \quad \operatorname{Pr}(A)=\frac{4}{8}=\frac{1}{2}
$$

$$
\text { - } \bar{B}=\{\text { at most } 2 \text { Heads }\}=\{H H H\}^{C}
$$

Independent?

$$
A \cap B=\{H A T, H H H\}
$$

Multiple Events - Mutual Independence

Definition. Events A_{1}, \ldots, A_{n} are mutually independent if for every non-empty subset $I \subseteq\{1, \ldots, n\}$, we have

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)
$$

Example - Network Communication

Each link works with the probability given, independently
i.e., mutually independent events A, B, C, D with

$$
\begin{aligned}
& P(A)=p \\
& P(B)=q \\
& P(C)=r \\
& P(D)=s
\end{aligned}
$$

Example - Network Communication

Each link works with the probability given, independently

$$
\begin{aligned}
& P(A)=p \\
& P(B)=q \\
& P(C)=r \\
& P(D)=s
\end{aligned}
$$

ie., mutually independent events A, B, C, D

What is $P(1-4$ connected $)$?

$$
\left(\begin{array}{l}
P(A)=0.3 \\
P(B)=0.4
\end{array}\right.
$$

Example - Network Communication

If each link works with the probability given, independently: What's the probability that nodes $\mathbf{1}$ and $\mathbf{4}$ can communicate?
$P(1-4$ connected $)=P((A \cap B) \cup(C \cap D))$

$$
=P(A \cap B)+P(C \cap D)-P(A \cap B \cap C \cap D)
$$

$P(A \cap B)=P(A) \cdot P(B)=p q$
$P(C \cap D)=P(C) \cdot P(D)=r s$
$P(A \cap B \cap C \cap D)$
$=P(A) \cdot P(B) \cdot P(C) \cdot P(D)=p q r s$

$$
P(1-4 \text { connected })=p q+r s-p q r s
$$

Independence - Another Look

Definition. Two events A and B are (statistically) independent if

Events generated independently \rightarrow their probabilities satisfy independence
But events can be independent without being generated by independent processes.

This can be counterintuitive!

Sequential Process

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability $3 / 5$
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls $w /$ probability 3/10 We draw a ball at random from the urn.

Are R and $3 R 3 B$ independent?

Sequential Process

Are R and 3R3B independent?

Ball drawn

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls $w /$ probability 3/10 We draw a ball at random from the urn.

$$
P(\mathbf{R})=\frac{3}{5} \times \frac{1}{2}+\frac{1}{10} \times \frac{3}{4}+\frac{3}{10} \times \frac{5}{12}=\frac{1}{2}
$$

$$
P(R \mid 3 R 3 B)=\frac{1}{2}
$$

$$
\text { Independent! } P(\mathbf{R})=P(\mathbf{R} \mid 3 \mathbf{R} 3 \mathbf{B})
$$

Often probability space (Ω, \mathbb{P}) is defined using independence

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other fips. Suppose it is tossed 3 times.
$\underline{P}(H H H)=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$ usis
$\mathbb{P}(T T T)=$
$\xrightarrow{P(H T T)}=\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$

Example - Biased coin
We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.

$$
\begin{gathered}
\mathbb{P}(2 \text { heads in } 3 \text { tosses })=\operatorname{Pr}\left(\frac{(1+H T)}{\left(\frac{2}{3}\right)^{2} \frac{1}{3}}\right) \text { HTA),THH?} \\
= \\
=3 \cdot\left(\frac{2}{3}\right)^{2} \frac{1}{3}
\end{gathered}
$$

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Conditional Independence

Definition. Two events A and B are independent conditioned on C if

$$
P(C) \neq 0 \text { and } P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) .
$$

- If $P(A \cap C) \neq 0$, equivalent to $P(B \mid A \cap C)=P(B \mid C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A \mid B \cap C)=P(A \mid C)$

Plain Independence. Two events A and B are independent if

$$
P(A \cap B)=P(A) \cdot P(B) .
$$

- If $P(A) \neq 0$, equivalent to $P(B \mid A)=P(B)$
- If $P(B) \neq 0$, equivalent to $P(A \mid B)=P(A)$

Example - Throwing Dice

Suppose that Coin 1 has probability of heads 0.3
and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads?

$$
\begin{aligned}
& P(H H H)=P\left(H H H \mid C_{1}\right) \cdot P\left(C_{1}\right)+P\left(H H H \mid C_{2}\right) \cdot P\left(C_{2}\right) \begin{array}{c}
\text { Law of Total Probability } \\
\text { (LTP) }
\end{array} \\
& \quad=P\left(H \mid C_{1}\right)^{3} P\left(C_{1}\right)+P\left(H \mid C_{2}\right)^{3} P\left(C_{2}\right) \quad \text { Conditional Independence } \\
& \quad=0.3^{3} \cdot 0.5+0.9^{3} \cdot 0.5=0.378
\end{aligned}
$$

$$
C_{i}=\operatorname{coin} i \text { was selected }
$$

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process

Often probability space (Ω, P) is given implicitly via sequential process

- Experiment proceeds in n sequential steps, each step follows some local rules defined by the chain rule and independence
- Natural extension: Allows for easy definition of experiments where $|\Omega|=\infty$

Example - Throwing A Die Repeatedly

Alice and Bob are playing the following game.
A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

If it shows $1,2 \rightarrow$ Alice wins.
If it shows $3 \rightarrow$ Bob wins.
Otherwise, play another round
What is $\operatorname{Pr}\left(\right.$ Alice wins on $1^{\text {st }}$ round $)=$ $\operatorname{Pr}\left(\right.$ Alice wins on $2^{\text {st }}$ round $)=$ $\operatorname{Pr}\left(\right.$ Alice wins on $i^{\text {th }}$ round $)=$? $\operatorname{Pr}($ Alice wins $)=$?

Sequential Process - defined in terms of independence

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

Local Rules: In each round, toss a die

- If it shows $1,2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow$ Bob wins
- Else, play another round
$\operatorname{Pr}($ Alice wins on i th round \mid nobody won in rounds $1 . . i-1)=1 / 3$

Sequential Process - Example

\mathcal{A}_{2}

Local Rules: In each round

- If it shows $1,2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow$ Bob wins
- Else, play another round

Events:

- $\mathcal{A}_{i}=$ Alice wins in round i
- $\mathcal{N}_{i}=$ nobody wins in round i

Sequential Process - Example

Events:

- $\mathcal{A}_{i}=$ Alice wins in round i

$\mathbb{P}\left(\mathcal{A}_{2}\right)=\mathbb{P}\left(\mathcal{N}_{1} \cap \mathcal{A}_{2}\right)$

$$
\mathcal{N}_{2}
$$

$2^{\text {nd }}$ roll indep of $1^{\text {st }}$ roll

Sequential Process - Example

Events:

- $\mathcal{A}_{i}=$ Alice wins in round i
- $\mathcal{N}_{i}=$ nobody wins in rounds $1 . . i$

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{A}_{2}\right) & =\mathcal{P}\left(\mathcal{N}_{1} \cap \mathcal{A}_{2}\right) \\
& =\mathcal{P}\left(\mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{A}_{2} \mid \mathcal{N}_{1}\right) \\
& =\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

The event \mathcal{A}_{2} implies \mathcal{N}_{1}, and this means that $\mathcal{A}_{2} \cap \mathcal{N}_{1}=\mathcal{A}_{2}$ $2^{\text {nd }}$ roll indep of $1^{\text {st }}$ roll

Sequential Process - Example

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{A}_{i}\right)=\mathcal{P}\left(\mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1} \cap \mathcal{A}_{i}\right) \\
& =\mathcal{P}\left(\mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{N}_{2} \mid \mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{N}_{3} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2}\right) \\
& \quad \cdots \times \mathcal{P}\left(\mathcal{N}_{i-1} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1}\right) \times \mathcal{P}\left(\mathcal{A}_{i} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1}\right) \\
& \quad=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}
\end{aligned}
$$

Sequential Process -- Example

$\mathcal{A}_{i}=$ Alice wins in round $i \quad \mathbb{P}\left(\mathcal{A}_{i}\right)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$
What is the probability that Alice wins?

Sequential Process -- Example

$\mathcal{A}_{i}=$ Alice wins in round $i \quad \mathbb{P}\left(\mathcal{A}_{i}\right)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$
What is the probability that Alice wins?

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots\right)=\Sigma_{i=1}^{\infty} \mathbb{P}\left(\mathcal{A}_{i}\right) \\
& \sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}=\frac{1}{3} \times 2=\frac{2}{3}
\end{aligned}
$$

$$
\text { All } \mathcal{A}_{i} \text { 's are disjoint. }
$$

$$
\text { Fact. If }|x|<1 \text {, then } \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} .
$$

Independence as an assumption

- People often assume it without justification
- Example: A skydiver has two chutes
A : event that the main chute doesn't open

$$
\begin{aligned}
& P(A)=0.02 \\
& P(B)=0.1
\end{aligned}
$$

B : event that the back-up doesn't open

- What is the chance that at least one opens assuming independence?

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.

