CSE 312 Foundations of Computing II

Lecture 6: Chain Rule and Independence

Announcements

- Section tomorrow is important with new content that you will need on pset 3. Bring your laptops.
- Anonymous questions: www.slido.com/1891306

Agenda

• Recap

- Chain Rule
- Independence
- Conditional independence
- Infinite process

$$P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i) P(E_i)$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_1, E_2, ..., E_n$ be a partition of the sample space, and F and event. Then,

7

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

• Tests for diseases are rarely 100% accurate.

Philosophy – Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed significantly

- Z = you have Zika
- T = you test positive for Zika

Have zika blue, don't pink

What is the probability you have Zika (event Z) given that you test positive (event T).

P(T|2) = 1

Suppose we had 1000 people:

- 5 have Zika and all test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

Picture below gives us the following Zika stats

- A test is 100% effective at detecting Zika ("true positive").
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika. 5% have it.

Have zika blue, don't pink

5/5 =

P(T|Z)

 $P(T|Z^c)$

What is the probability you have Zika (event Z) given that you test positive (event T)?

 $P(Z) = \frac{995}{1000} = 0.005$

Sup

Suppose we had 1000 people:

- 5 have Zika and all test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$P(2T) = \frac{5}{5+10} = \frac{1}{3}$$

Have zika blue, don't pink

Picture below gives us the following Zika stats

- A test is 100% effective at detecting Zika ("true positive").
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c) = 10/995$
- 0.5% of the US population has Zika. 5% have it.

ositive"). P(T|Z) = 5/5 = 1of the time $P(T|Z^c) = 10/995$ $P(Z) = \frac{995}{1000} = 0.005$

What is the probability you have Zika (event Z) given that you test positive (event T)?

Suppose we had 1000 people:

- 5 have Zika and and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$\frac{5}{5+10} = \frac{1}{3} \approx 0.33$$

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time $P(T|Z^c) = 0.01$
- 0.5% of the US population has Zika. P(Z) = 0.005

What is the probability you test negative (event T^c) give you have Zika (event Z)?

$$P(T^{c}|Z) = 1 - P(T|Z) = 0.02$$

Conditional Probability Define a Probability Space

The probability conditioned on *A* follows the same properties as (unconditional) probability.

16

Example.
$$\mathbb{P}(\mathcal{B}^{c}|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$$

 $P(\mathcal{B}|\mathcal{A}) + P(\mathcal{B}^{c})\mathcal{A}$
 $= \frac{P(\mathcal{B}\cap\mathcal{A})}{P(\mathcal{A})} + \frac{P(\mathcal{B}^{c}\cap\mathcal{A})}{P(\mathcal{A})}$
 $= \frac{P(\mathcal{B}\cap\mathcal{A})}{P(\mathcal{B}\cap\mathcal{A})} + \frac{P(\mathcal{B}^{c}\cap\mathcal{A})}{P(\mathcal{A})} = \frac{P(\mathcal{A})}{P(\mathcal{A})} = 1$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Agenda

- Recap
- Chain Rule 🛛 🗨
- Independence
- Conditional independence
- Infinite process

Note See Lecture & Megathread
Thixed what's written on this slide after techne
Chain Rule

$$\mathbb{P}(B|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap B)}{\mathbb{P}(\mathcal{A})} \longrightarrow \mathbb{P}(\mathcal{A})\mathbb{P}(B|\mathcal{A}) = \mathbb{P}(\mathcal{A} \cap B)$$

$$\mathbb{P}(A \cap A \cap A) = \mathbb{P}(A \cap A)\mathbb{P}(A \cap A)$$

20

 $= P(A_1) P(A_2|A_1) P(A_3|A_1, A_2)$ But order doesn't metter

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

) = P($\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$)?

A: Ace of Spades FirstB: 10 of Clubs SecondC: 4 of Diamonds Third

Agenda

- Recap
- Chain Rule
- Independence 🗨
- Conditional independence
- Infinite process

Independence

4

Multiple Events – Mutual Independence

Definition. Events $A_1, ..., A_n$ are **mutually independent** if for every non-empty subset $I \subseteq \{1, ..., n\}$, we have $P\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} P(A_i).$

Example – Network Communication

Each link works with the probability given, independently

i.e., mutually independent events *A*, *B*, *C*, *D* with

$$P(A) = p$$
$$P(B) = q$$
$$P(C) = r$$
$$P(D) = s$$

Example – Network Communication

If each link works with the probability given, **independently**: What's the probability that nodes 1 and 4 can communicate?

 $P(1-4 \text{ connected}) = P((A \cap B) \cup (C \cap D))$ = $P(A \cap B) + P((C \cap D) - P(A \cap B \cap C \cap D)$ $P(A \cap B) = P(A) \cdot P(B) = pq$ $P(C \cap D) = P(C) \cdot P(D) = rs$ $P(A \cap B \cap C \cap D)$ = $P(A) \cdot P(B) \cdot P(C) \cdot P(D) = pqrs$ $P(A \cap B \cap C \cap D)$ = $P(A) \cdot P(B) \cdot P(C) \cdot P(D) = pqrs$

P(1-4 connected) = pq + rs - pqrs

Independence – Another Look

Events generated independently *→* their probabilities satisfy independence

But events can be independent without being generated by independent processes.

This can be counterintuitive!

Sequential Process

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls w/ probability 1/10
- 5 red and 7 blue balls w/ probability 3/10
 We draw a ball at random from the urn.

Are **R** and **3R3B** independent?

Are **R** and **3R3B** independent?

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability 3/5
- 3 red and 1 blue balls w/ probability 1/10
- 5 red and 7 blue balls w/ probability 3/10 We draw a ball at random from the urn.

$$P(\mathbf{R}) = \frac{3}{5} \times \frac{1}{2} + \frac{1}{10} \times \frac{3}{4} + \frac{3}{10} \times \frac{5}{12} = \frac{1}{2}$$
$$P(\mathbf{R} \mid \mathbf{3R3B}) = \frac{1}{2}$$

Independent! $P(\mathbf{R}) = P(\mathbf{R} \mid \mathbf{3R3B})$

34

Often probability space (Ω, \mathbb{P}) is **defined** using independence

Example – Biased coin

 $\mathbb{P}(HHH) = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$

 $\mathbb{P}(HTT) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$

 $\mathbb{P}(TTT) =$

We have a <u>biased coin</u> comes up Heads with probability 2/3; Each flip is independent of all other fips. Suppose it is tossed 3 times.

Example – Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.

 $= 3 \cdot \left(\frac{2}{3} \right)$

(HTH) (TH HZ

5

 $\mathbb{P}(2 \text{ heads in } 3 \text{ tosses}) = \mathbb{P}(4+1)^{2}$

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence 🗨
- Infinite process

Conditional Independence

Definition. Two events A and B are **independent** conditioned on C if $P(C) \neq 0$ and $P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$.

41----

- If $P(A \cap C) \neq 0$, equivalent to $P(B|A \cap C) = P(B \mid C)$
- If $P(B \cap C) \neq 0$, equivalent to $P(A | B \cap C) = P(A | C)$

Plain Independence. Two events *A* and *B* are **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

• If $P(A) \neq 0$, equivalent to P(B|A) = P(B)

• If $P(B) \neq 0$, equivalent to P(A|B) = P(A)

Example – Throwing Dice

Suppose that Coin 1 has probability of heads 0.3 and Coin 2 has probability of head 0.9.
We choose one coin randomly with equal probability and flip that coin 3 times independently. What is the probability we get all heads?

 $P(HHH) = P(HHH | C_1) \cdot P(C_1) + P(HHH | C_2) \cdot P(C_2) \xrightarrow{\text{Law of Total Probability}}{(LTP)}$ = $P(H|C_1)^3 P(C_1) + P(H | C_2)^3 P(C_2)$ Conditional Independence = $0.3^3 \cdot 0.5 + 0.9^3 \cdot 0.5 = 0.378$

 C_i = coin *i* was selected

Agenda

- Recap
- Chain Rule
- Independence
- Conditional independence
- Infinite process 🛛 🗨

Often probability space (Ω, P) is given **implicitly** via sequential process

- Experiment proceeds in *n* sequential steps, each step follows some local rules defined by the chain rule and independence
- Natural extension: Allows for easy definition of experiments where $|\Omega| = \infty$

Example – Throwing A Die Repeatedly

Alice and Bob are playing the following game.

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

If it shows 1, 2 \rightarrow Alice wins. If it shows 3 \rightarrow Bob wins. Otherwise, play another round

What is Pr(Alice wins on 1st round) = Pr(Alice wins on 2st round) = ... Pr(Alice wins on *i*th round) = ? Pr(Alice wins) = ?

Sequential Process – defined in terms of independence

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

Local Rules: In each round, toss a die

- If it shows $1, 2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow Bob$ wins
- Else, play another round

 $i_{1/2} = i$ th round toss 1 or 2 1/6 $i_3 = i$ th round toss 3 $i_{1/2}$ $i_{456} = i$ th round toss 4 or 5 or 6

Pr (Alice wins on *i* -th round | nobody won in rounds 1..i-1) = 1/3

Sequential Process – Example

Events:

- \mathcal{A}_i = Alice wins in round *i*
- \mathcal{N}_i = nobody wins in rounds 1..*i*

 $\mathbb{P}(\mathcal{A}_2) = \mathbb{P}(\mathcal{N}_1 \cap \mathcal{A}_2)$

 \mathcal{N}_2 2nd roll indep of 1st roll

Sequential Process – Example

Events:

- \mathcal{A}_i = Alice wins in round *i*
- \mathcal{N}_i = nobody wins in rounds 1..*i*

$$\mathbb{P}(\mathcal{A}_{2}) = \mathcal{P}(\mathcal{N}_{1} \cap \mathcal{A}_{2})$$
$$= \mathcal{P}(\mathcal{N}_{1}) \times \mathcal{P}(\mathcal{A}_{2} | \mathcal{N}_{1})$$
$$= \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$
The event \mathcal{A}_{2} implies \mathcal{N}_{1} , and this means that $\mathcal{A}_{2} \cap \mathcal{N}_{1} = \mathcal{A}_{2}$ 2^{nd} roll

49

Sequential Process -- Example

$$\mathcal{A}_i$$
 = Alice wins in round i $\mathbb{P}(\mathcal{A}_i) = \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$

What is the probability that Alice wins?

Sequential Process -- Example

$$\mathcal{A}_i$$
 = Alice wins in round i $\mathbb{P}(\mathcal{A}_i) = \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$

What is the probability that Alice wins?

$$\mathbb{P}(\mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots) = \sum_{i=1}^{\infty} \mathbb{P}(\mathcal{A}_i) \quad \text{All } \mathcal{A}_i \text{'s are disjoint.}$$

$$\sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3} = \frac{1}{3} \times 2 = \frac{2}{3} \quad \text{Fact. If } |x| < 1 \text{, then } \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}.$$

Independence as an assumption

- People often assume it **without justification**
- Example: A skydiver has two chutes

A: event that the main chute doesn't openP(A) = 0.02B: event that the back-up doesn't openP(B) = 0.1

• What is the chance that at least one opens assuming independence?

Assuming independence doesn't justify the assumption! Both chutes could fail because of the same rare event e.g., freezing rain.