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Lecture 5: Conditional Probability and Bayes Theorem
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©
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Probability

Examples:

* Single coin flip: Q@ = {H, T}

* Two coinflips: Q = {HH,HT,TH, TT}
 Rollofadie: 0 ={1,2,3,4,5,6}

Definition. A sample space (1 is the set of
- all possible outcomes of an experiment.

: . Examples:
: L] L] L] C 3 :
 Definition. An event £ < () is a subset of : Getting at least one head in two coin flips:

possible outcomes. E = {HH, HT,TH}

* Rolling an even number on a die:
E= {2,4,6}

O\ (H)=W
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" countable (e.g., integers) !

___________________________________________________________________________________________________________________

Def|n|t|on. A (dlscrete) probab|I|ty space

_is a pair (), P) where: /

. (is a set called the sample space.

* [Pis the probability measure,

 afunction P: Q — [0,1] such that:
—P(E) > 0forallEC Q

Some outcome must show 1 | The l'keI'hOOd (or
1 ~ probability) of each
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CRRR—— " outcomeis non-negative.
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‘Set of possible
-elementary outcomes

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

‘Specifies Likelihood

(or probability) of each

“event in the sample space

P(E\a i v (‘ﬂ) ¥
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\
Axioms of Probability ?(&E\T— > )

Let () denote the sample spaceand E, F € ) be events.

J— = ©
Axiom 1 (Non-negativit@E) > O)
Axiom 2 (Normalization): P(()) = 1 Z
Axiom 3 (Countable Addimnd F are mutually exclusive,

enP(EUF)=P(E) + P(F) _ N‘?

""""""""""""""""""" —_— - /

’ Corollary 1 (Complementation): P(E€) =1 — P(E)
Corollary 2 (Monotonicity): If E € F, P(E) < P(F
Corollary 3 (Inclusion-Exclusion): P(E U F) = P(E) + P(F) — P(ENF)

= { G “?\Z;Sf)
Q\epF) —R(eAC)




Agenda

Conditional Probability &

Bayes Theorem

Law of Total Probability

Bayes Theorem + Law of Total Probability

* More Examples
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Conditional Probability

Definition. The conditional probability of event A given an event B
happened (assuming P(B) # 0)is

An equivalent and useful formulais  crwss wnvlholy ADER,

9\6)
P(ANB) =iP(A|B)P(B) )
»



Reversing Conditional Probability

Question: Does P(A|B) = P(B|A)?
———

No! The following analogy is purely for intuition and makes no
sense in terms of probability

* Let A be the event you are wet
* Let B be the event you are swimming

P(A|B) =1
P(B|A) # 1
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Example with Conditional Probability

Toss a red die and a blue die (both 6
sided and all outcomes equally A s W
likely). What is P(B)? What is
P(B|A)?

() : Uniform
Die 2 B ‘red die is 1’

110 0 0 00 A={(1,3),(2,2),(3,1)}
1®:0 0 O O O . ,

o B ={(1,1),...,(1,6)}
: Ep 0 0 0O

L0180 0 0 O

AT A= ‘sumis 4’
i0./0-8 0 0 0

-o:
[ ™

| 2 3 | 5 6
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Bayes Theorem @
Law of Total Probability
Bayes Theorem + Law of Total Probability

* More Examples
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Bayes Theorem

A formula to let us “reverse’” the conditional.

_____________________________________________________________________________________________________________________________________________________________________

' Theorem. (Bayes Rule) For events A and B, where P(4), P(B) > 0,

peag) < PEIDPA

P(A) is called the Brlor (our belief without knowing anything)

e ——
P(A|B) is called the posterior (our belief after Iearmng B)
S a ————
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P(MB)= 'e%? s ?ga(;a): PGB \N)
P®) ‘ - BN)
PRWR)PLR) = ‘?\N\BZ = PEW)PRN)? )

‘\

P(RB)C®) = P(BIN)P(N) / ;,L@)
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Bayes Theorem Proof

By definition of conditional probability
P(AnB) = P(A|B)P(B)

Swapping A, B gives
P(BNnA)=P(B|A)P(A)

ButP(ANnB) = P(BNA),so
P(A|B)P(B) = P(B|A)P(A)

Dividing both sides by P(B) gives

oalg) = PEIAP@A)

P(B)
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Our First Machine Learning Task: Spam Filtering —

S‘. L‘..o\\ \S Mvm
e

ALY

F 1)\ &d‘w‘w“‘(

“EREE!
i What is EEE%;babilitx this email is spam, given the subject contains “FREE™?
Some usetu :

== 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject. P F Q =0 \
. @Z

Subject: (FREE)SSS CLICK HERE”

=== ;0% of spam emails contain the word “FREE” in the subject. ?r(F \S\
~= 80% of emails you receive are spam.

e(S)=0.
P(E\S) O(s RE) =
PC(S F) ?(F) )

0.¥°0,%
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Brain Break

Doing Bayesian
Data Analysis

A Tutorial with R, JAGS, and Stan

John K. Kruschke @
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Bayes Theorem
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Partitions (Idea)

These events partition the sample space
1. They “cover” the whole space =

2. They don’t overlap (/
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Partition

' Definition. Non-empty events £/, E,, ..., E,, partition the sample space () if
- (Exhaustive)

n

~ (Pairwise Mutually Exclusive)

E__g 20



Law of Total Probability (Idea)

If we know £, E,, ..., E,, partition (), what can we say about P (F)
—

c - E‘ UF(\E} U PI\E3
ENE,. @\ > ( ) : )

EN. B Es 4 ﬂ."‘.\=

0 ‘?-——,\4&\) 0T l\%) 4\ I\Ess
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Law of Total Probability (LTP)

' Definition. If events £, £, ..., E,, partition the sample space (), then for any event F |
| — n |

P(F) = P(FNE;) + ..+ P(FNE,) = z P(F N E))

Using the definition of conditional probability P(F N E) = P(F|E)P(E)
We can get the alternate form of this that show

P(FNE;

& '
P(F) = 2 P(F|E)P(E;)
— P

\
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Another Contrived Example

Alice has two pockets: (/{
* Left pocket: Two red balls, two green balls
* Right pocket: One red ball, two green balls.

Alice picks a random ball from a random pocket.
[Both pockets equally likely, each ball equally likely.]

What is P(R) ?

(\UA$ I\QA baﬂ& .

g 28
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Sequential Process - Non-Uniform Case

AN e :
Q(?\\Qws Right Red -* Left pocket: Two red, two green
* Right pocket: One red, two green.

Right Green

o Alice picks a random ball from a

\ < Left Red random pocket
Left -
Left Green
V(G-u»\‘z‘a&»‘ Kb{t \RK\

G = @ b R4 Y TRyt

= A - N
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Sequential Process — Non-Uniform Case

* Left pocket: Twored, two green
e < %__'_____‘_‘f%'fffﬁf!fﬁf:?_'ii_'i?ﬁ___tfﬁ?_%i?f'f‘;__%

Left <

P(R) = P(R N Left) + P(R N Right)  (Law of total probability)
= P(Left) xP(R|Left) + P(Right) xP(R|Right)
11 11 1 1 5

=252 32%37376T 12 y
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Our First Machine Learning Task: Spam Filteringé‘ sl N
S Lyeo-\ \Ss!\gm
Subject: (“FREf SSS CLICK HERE” o

F'Z < W R w o
3 epee

i' What is the probability this email is spam, given the subject contains “FREE’’?

— 10% of ham (i.e., not spam) emails contain the word “FREE” in the subject < \ — (
3 ( pam) *PH(F \s ) =0.\

— 70% of spam emails contain the word “FREE” in the subject.

2 80% of emails you receive are spam. ?«F\;\ =Q.%+ (/
RS \F) _ PRIS) RES) ?(S -0 4
wp F) R(’\ = ON
5)= O.

0.+°0,%

L enga
Use Bomo o wgt W) B s )
PE) = AF\S)IS) +RE1R) R




Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let £, £, ..., £}, be a partition of the
sample space, and F an‘ event. Then,

_ P(FIEDP(Ey) _ _ P(FIE)P(Ey)
PEID =@y, T T PFIRPED

p— — e ——

Simple Partition: In particular, if £ is an event with non-zero
probability, then

P(EIF) = P(F|E)P(E)

P(F|E)P(E) + P(F|E©)P(E®)

28



Agenda

Conditional Probability

Bayes Theorem
Law of Total Probability
Bayes Theorem + Law of Total Probability

More Examples 4
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Example - Zika Testing

Zika fever

OVERVIEW SYMPTOMS SPECIALISTS

Fever
Rash
Joint pain
Red eyes

Spread through
mosquito hiteource

A disease caused by Zika virus that's spread through
mosquito bites.

This example and following slides are from Lisa Yan (Stanford).

Usually no or mild symptoms (rash); sometimes
severe symptoms (paralysis).

During pregnancy: may cause birth defects.

-

Suppose you took a Zika test, and it returns
‘“positive’”’, what is the likelihood that you
actually have the disease?

* Tests for diseases are rarely 100% accurate.

~
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AR S B\ 7
Example - Zika Testing T 1 Ao posihvt

Suppose we know the following Zika stats \(/
A test is 98% effective at detecting Zika (“true positive”) P (T \Z = 04} =
—\ However, the test may yield a “false positive” 1% of the time o(T \i =—0.0\

— 0.5% of the US population hams r\‘
—an=ylES

What is the probability you have Zika (event 7) if you test positive (eve

P(M) .
TR P2 (E\D)° (L\ +R(v\2)®° C{-)




Example - Zika Testing Have zika blue, don’t pink

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”) 100%
— However, the test may yield a “false positive” 1% of the time 10/995 = approximately 1%
— 0.5% of the US population has Zika. 5% have it.

What is the probability you have Zika (event 7) if you test positive (event T).

Suppose we had 1000 people:
* 5 have Zika and test positive

uile nlie nilo nile nlle

* 10 do not have Zika and test positive

5

~ 0.33
5+ 10

Wl =

33




Philosophy - Updating Beliefs

While it’s not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

| now have a 33%
chance of having Zika
after the test.

| have a 0.5% chance
of having Zika

Prior: P(Z) Posterior: P(ZlT)

34



Example - Zika Testing

Suppose we know the following Zika stats
— Atestis 98% effective at detecting Zika (“true positive”)
— However, the test may yield a “false positive” 1% of the time
— 0.5% of the US population has Zika.

What is the probability you test negative (event T) if you have Zika (event Z)?

35



Conditional Probability Defines a Probability Space

The probability conditioned on A follows the same properties as
(unconditional) probability.

Example. P(B¢|A) =1 — P(B|A)

36



Conditional Probability Defines a Probability Space

The probability conditioned on A follows the same properties as
(unconditional) probability.

Example. P(B¢|A) =1 — P(B|A)

Formally. (), IP) is a probability space + P(A) > 0

‘ (A, P(- |A)) is a probability space

37



Summary

* Conditional Probability./-/’“”/

* Bayes Theorem

* Law of Total probability

PP (F) =

P(A N B)

L Rl =
P(BIA)P(A
s P(AIB) = ¢ 1&(1)9)( )

 P(F|E;))P(E;) E;partition Q
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Gambler’s fallacy

Assume we toss 51 fair coins. Each outcome equally likely.
Assume we have seen 50 coins, and they are all “tails”.
What are the odds the 515t coin is “heads”?

A = first 50 coins are “tails”
B = first 50 coins are “tails’’, 51° coin is "heads”

P(B|A) =

39



Gambler’s fallacy

Assume we toss 51 fair coins.
Assume we have seen 50 coins, and they are all “tails”.
What are the odds the 515t coin is “heads”?

A = first 50 coins are “tails”
B = first 50 coins are “tails’’, 51° coin is "heads”

515t coin is independent of
[P(dq N 73) 1/251 1  outcomes of first 50 tosses!

PBIA) == =225~ 7

Gambler’s fallacy = Feels like it’s time for  heads”!?

40



