#### **CSE 312**

## Foundations of Computing II

**Lecture 5: Conditional Probability and Bayes Theorem** 



#### Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

# $(\mathcal{S}, \mathcal{P}(\cdot))$

#### **Review Probability**

**Definition.** A **sample space**  $\Omega$  is the set of all possible outcomes of an experiment.

#### Examples:

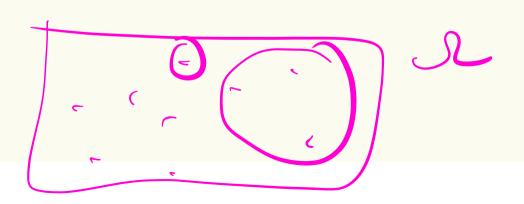
- Single coin flip:  $\Omega = \{H, T\}$
- Two coin flips:  $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die:  $\Omega = \{1, 2, 3, 4, 5, 6\}$

**Definition.** An **event**  $E \subseteq \Omega$  is a subset of possible outcomes.

#### Examples:

- Getting at least one head in two coin flips:
   E = {HH, HT, TH}
- Rolling an even number on a die:

$$E = \{2, 4, 6\}$$





#### **Probability space**

Either finite or infinite countable (e.g., integers)

**Definition.** A (discrete) probability space is a pair  $(\Omega, \mathbb{P})$  where:

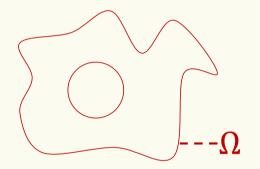
- $\Omega$  is a set called the **sample space**.
- P is the **probability measure**, a function  $\mathbb{P}: \Omega \to [0,1]$  such that:

$$-\mathbb{P}(E) \ge 0 \text{ for all } E \subseteq \Omega$$

$$-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative. Set of possible elementary outcomes



Specifies Likelihood (or probability) of each event in the sample space

$$P(E) = \sum_{w \in E} P(w)$$

### uniform prob space.

#### **Review Axioms of Probability**

Let  $\Omega$  denote the sample space and  $E, F \subseteq \Omega$  be events.

Axiom 1 (Non-negativity):  $P(E) \ge 0$ 

Axiom 2 (Normalization):  $P(\Omega) = 1$ 

**Axiom 3 (Countable Additivity):** If *E* and *F* are mutually exclusive,

then  $P(E \cup F) = P(E) + P(F)$ 



Corollary 1 (Complementation):  $P(E^c) = 1 - P(E)$ 

Corollary 2 (Monotonicity): If  $E \subseteq F$ ,  $P(E) \leq P(F)$ 

Corollary 3 (Inclusion-Exclusion):  $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ 

AG) E

E' = E

5

#### Agenda

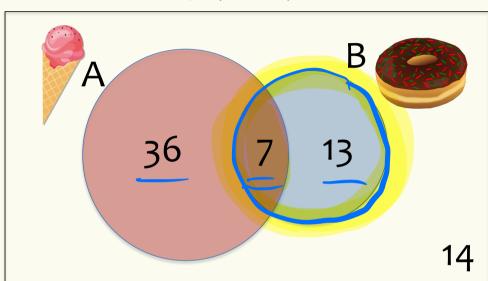
- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

#### 36+7+13+14=70

#### **Conditional Probability (Idea)**

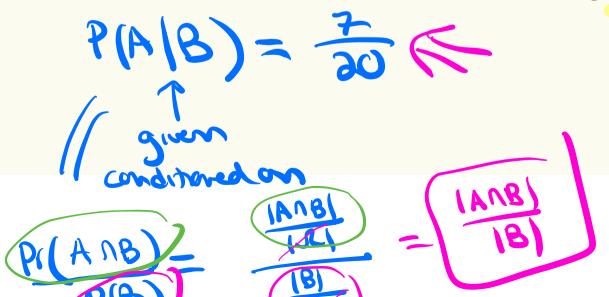


B Idanis



$$|SC| = 70$$
  
 $PC(W) = \frac{1}{70}$   
 $PC(B) = \frac{13}{30}$ 

What's the probability that someone likes ice cream given they like donuts?





**Definition.** The **conditional probability** of event A **given** an event B

happened (assuming  $P(B) \neq 0$ ) is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

An equivalent and useful formula is

$$P(A \cap B) = P(A|B)P(B)$$

#### **Reversing Conditional Probability**

**Question:** Does 
$$P(A|B) = P(B|A)$$
?

No! The following analogy is purely for intuition and makes no sense in terms of probability

- Let A be the event you are wet
- Let B be the event you are swimming

$$P(A|B) = 1$$
$$P(B|A) \neq 1$$

#### **Example with Conditional Probability**

Toss a red die and a blue die (both 6 sided and all outcomes equally likely). What is P(B)? What is P(B|A)?

 $\Omega = \{1, \dots, 6\}^2$ 

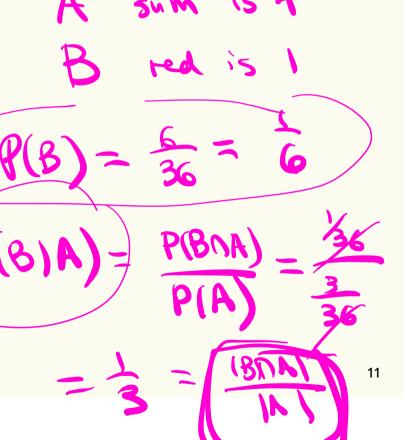
A = 'sum is 4'

 $A = \{(1,3), (2,2), (3,1)\}$ 

 $B = \{(1,1),\ldots,(1,6)\}$ 

 $\Omega$ : Uniform

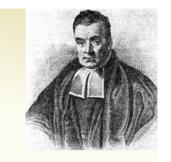
B = `red die is 1'



#### Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

#### **Bayes Theorem**



A formula to let us "reverse" the conditional.

**Theorem.** (Bayes Rule) For events A and B, where P(A), P(B) > 0,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

P(A) is called the **prior** (our belief without knowing anything) P(A|B) is called the **posterior** (our belief after learning B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad defin \quad P(B \cap A) = P(B|A)$$

$$P(A) = P(A \cap B) = P(B \cap A) = P(B \cap A) = P(B \cap A) = P(B \cap A)$$

$$P(A \cap B) = P(B \cap A) =$$

#### **Bayes Theorem Proof**

By definition of conditional probability

$$P(A \cap B) = P(A|B)P(B)$$

Swapping A, B gives

$$P(B \cap A) = P(B|A)P(A)$$

But 
$$P(A \cap B) = P(B \cap A)$$
, so 
$$P(A|B)P(B) = P(B|A)P(A)$$

Dividing both sides by P(B) gives

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

#### **Our First Machine Learning Task: Spam Filtering**



Subject: (FREE) \$\$\$ CLICK HERE"

F: subject contany

What is the probability this email is spam, given the subject contains "FREE"? Some useful stats:

10% of ham (i.e., not spam) emails contain the word "FREE" in the subject.

>70% of spam emails contain the word "FREE" in the subject.

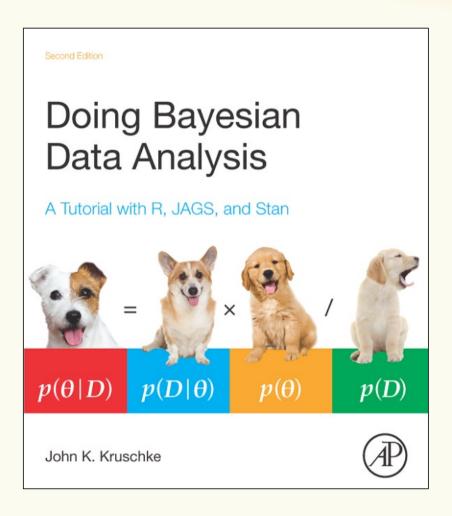
80% of emails you receive are spam.

$$P(S) = 0.8$$

$$P(S) = 0.2$$

16

#### **Brain Break**



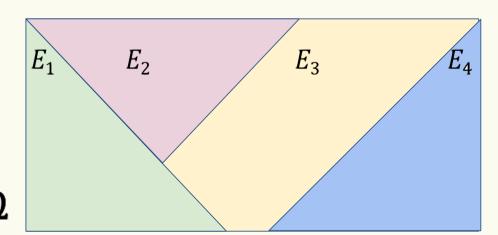
#### Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

#### Partitions (Idea)

These events **partition** the sample space

- 1. They "cover" the whole space
- 2. They don't overlap



#### **Partition**

**Definition.** Non-empty events  $E_1, E_2, ..., E_n$  partition the sample space  $\Omega$  if **(Exhaustive)** 

$$\underline{E_1 \cup E_2 \cup \cdots \cup E_n} = \bigcup_{i=1}^n E_i = \underline{\Omega}$$

(Pairwise Mutually Exclusive)

$$\forall_i \forall_{i \neq j} E_i \cap E_j = \emptyset$$

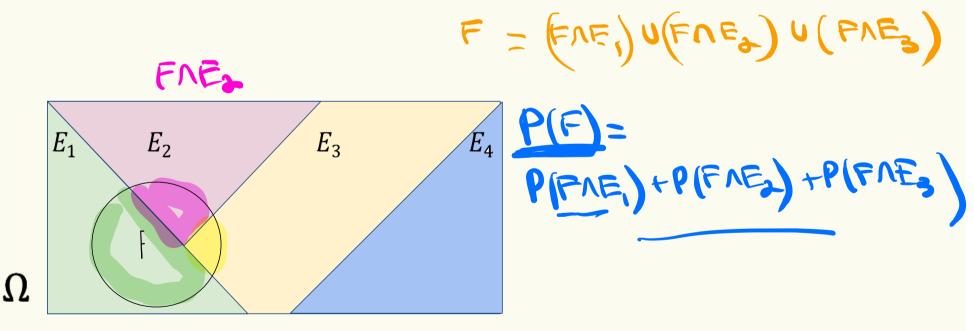


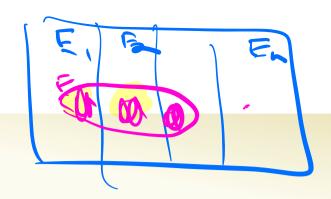


#### Law of Total Probability (Idea)

FUE, FUE

If we know  $E_1, E_2, ..., E_n$  partition  $\Omega$ , what can we say about  $\underline{P(F)}$ 





#### Law of Total Probability (LTP)

**Definition.** If events  $E_1, E_2, ..., E_n$  partition the sample space  $\Omega$ , then for any event F

$$P(F) = P(F \cap E_1) + \dots + P(F \cap E_n) = \sum_{i=1}^{n} P(F \cap E_i)$$

Using the definition of conditional probability  $P(F \cap E) = P(F|E)P(E)$ We can get the alternate form of this that show

$$P(F) = \sum_{i=1}^{n} P(F|E_i)P(E_i)$$

#### **Another Contrived Example**

#### Alice has two pockets:

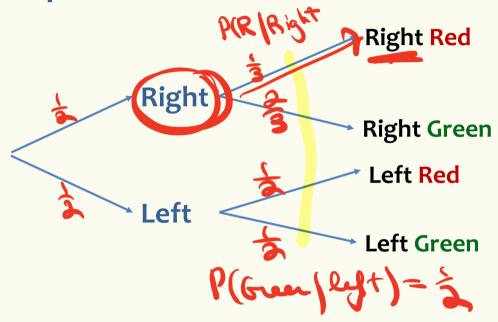
- Left pocket: Two red balls, two green balls
- Right pocket: One red ball, two green balls.





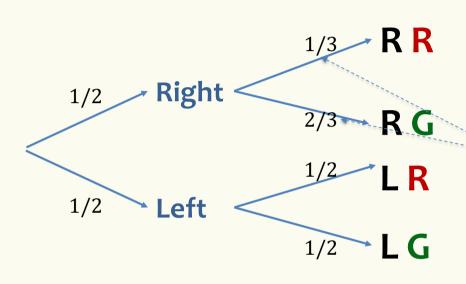
Alice picks a random ball from a random pocket. [Both pockets equally likely, each ball equally likely.]

#### **Sequential Process – Non-Uniform Case**



- Left pocket: Two red, two green
- Right pocket: One red, two green.
- Alice picks a random ball from a random pocket

#### **Sequential Process – Non-Uniform Case**



- **Left pocket:** Two red, two green
- Right pocket: One red, two green.

25

$$1/3 = P(R \mid R)$$
 and  $2/3 = P(G \mid R)$ 

$$\mathbb{P}(\mathbf{R}) = \mathbb{P}(\mathbf{R} \cap \mathbf{Left}) + \mathbb{P}(\mathbf{R} \cap \mathbf{Right}) \qquad \text{(Law of total probability)}$$

$$= \mathbb{P}(\mathbf{Left}) \times \mathbb{P}(\mathbf{R}|\mathbf{Left}) + \mathbb{P}(\mathbf{Right}) \times \mathbb{P}(\mathbf{R}|\mathbf{Right})$$

$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$$

#### Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples

# Our First Machine Learning Task: Spam Filtering 5: email is spam

Subject: FREE



\$\$\$ CLICK HERE"

-: subject contains

What is the probability this email is spam, given the subject contains "FREE"?

Some asoful stats:

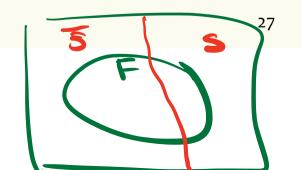


10% of ham (i.e., not spam) emails contain the word "FREE" in the subject 70% of spam emails contain the word "FREE" in the subject.

80% of emails you receive are spam.

$$P(S) = 0.8$$

$$R(S) = 0.2$$



#### **Bayes Theorem with Law of Total Probability**

**Bayes Theorem with LTP:** Let  $E_1, E_2, ..., E_n$  be a partition of the sample space, and F and event. Then,

$$P(E_1|F) = \frac{P(F|E_1)P(E_1)}{(P(F))} = \frac{P(F|E_1)P(E_1)}{\sum_{i=1}^{n} P(F|E_i)P(E_i)}$$

**Simple Partition:** In particular, if E is an event with non-zero probability, then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)}$$

#### Agenda

- Conditional Probability
- Bayes Theorem
- Law of Total Probability
- Bayes Theorem + Law of Total Probability
- More Examples



Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

• Tests for diseases are rarely 100% accurate.

Z: have Zika T: test positive.

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T)

$$P(Z|T) = \frac{P(T|Z)P(Z)}{P(T)} = \frac{0.98 \cdot 0.005}{P(T)}$$

P(2/T) = 0.33

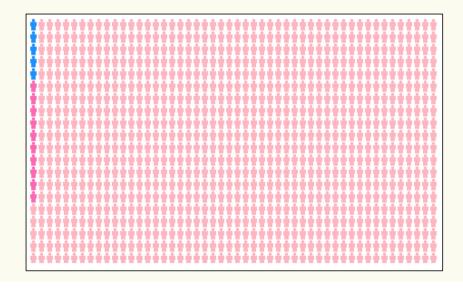
3

Have zika blue, don't pink

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") 100%
- However, the test may yield a "false positive" 1% of the time 10/995 = approximately 1%
- 0.5% of the US population has Zika. 5% have it.

What is the probability you have Zika (event  $\mathbb{Z}$ ) if you test positive (event  $\mathbb{T}$ ).



Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$\frac{5}{5+10} = \frac{1}{3} \approx 0.33$$

#### **Philosophy – Updating Beliefs**

While it's not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika

T = you test positive for Zika



Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event  $\overline{T}$ ) if you have Zika (event Z)?

#### **Conditional Probability Defines a Probability Space**

The probability conditioned on A follows the same properties as (unconditional) probability.

**Example.** 
$$\mathbb{P}(\mathcal{B}^c|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$$

#### **Conditional Probability Defines a Probability Space**

The probability conditioned on A follows the same properties as (unconditional) probability.

**Example.** 
$$\mathbb{P}(\mathcal{B}^c|\mathcal{A}) = 1 - \mathbb{P}(\mathcal{B}|\mathcal{A})$$

**Formally.**  $(\Omega, \mathbb{P})$  is a probability space  $+ \mathbb{P}(\mathcal{A}) > 0$ 

$$(\mathcal{A}, \mathbb{P}(\cdot | \mathcal{A}))$$
 is a probability space

#### **Summary**

- Conditional Probability
- Bayes Theorem  $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$ • Law of Total probability  $\mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}(F|E_i)\mathbb{P}(E_i) \quad E_i \text{ partition } \Omega$

$$\mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}(F|E_i)\mathbb{P}(E_i) \quad E_i \text{ partition } \Omega$$

 $\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}$ 

#### **Gambler's fallacy**

Assume we toss **51** fair coins. Each outcome equally likely. Assume we have seen **50** coins, and they are all "tails". What are the odds the **51**<sup>st</sup> coin is "heads"?

 $\mathcal{A} = \text{first 50 coins are "tails"}$   $B = \text{first 50 coins are "tails"}, 51^{\text{st}} \text{ coin is "heads"}$ 

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) =$$

#### **Gambler's fallacy**

Assume we toss 51 fair coins.

Assume we have seen **50** coins, and they are all "tails".

What are the odds the 51st coin is "heads"?

 $\mathcal{A}$  = first 50 coins are "tails"

B =first 50 coins are "tails", 51<sup>st</sup> coin is "heads"

$$\mathbb{P}(\mathcal{B}|\mathcal{A}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} = \frac{1/2^{51}}{2/2^{51}} = \frac{1}{2}$$

51<sup>st</sup> coin is independent of outcomes of first 50 tosses!

**Gambler's fallacy** = Feels like it's time for "heads"!?