CSE 312

Foundations of Computing II

Lecture 4: Intro to discrete probability

Anna R. Karlin

Style Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©
Plus few slides from Berkeley CS 70

Probability

- We want to model uncertainty.
 - i.e., outcome not determined a-priori
 - E.g. throwing dice, flipping a coin...
 - We want to numerically measure likelihood of outcomes = probability.
 - We want to make complex statements about these likelihoods.
- We will not argue why a certain physical process realizes the probabilistic model we study
 - Why is the outcome of the coin flip really "random"?
- First part of class: "Discrete" probability theory
 - Experiment with finite / discrete set of outcomes.
 - Will explore countably infinite and continuous outcomes later

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Sample Space

Definition. A **sample space** Ω is the set of all possible outcomes of an experiment.

Examples:

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Events

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die : $E = \{2, 4, 6\}$

Events

Definition. An **event** $E \subseteq \Omega$ is a subset of possible outcomes.

Examples:

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number on a die : $E = \{2, 4, 6\}$

Definition. Events E and F are mutually exclusive if $E \cap F = \emptyset$ (i.e., can't happen at same time)

Examples:

• For dice rolls: If $E = \{2, 4, 6\}$ and $F = \{1, 5\}$, then $E \cap F = \emptyset$

Example: 4-sided Dice

Suppose I roll two 4-sided dice Let D1 be the value of the blue die and D2 be the value of the red die. To the right is the sample space (possible outcomes).

Die 1 (D1)

What outcomes match these events?

A.
$$D1 = 1$$

B.
$$D1 + D2 = 6$$

C.
$$D1 = 2 * D2$$

	1	2	3	4
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Example: 4-sided Dice

Suppose I roll two 4-sided dice Let D1 be the value of the blue die and D2 be the value of the red die. To the right is the sample space (possible outcomes).

Die 1 (D1)

What outcomes match these events?

A. D1 = 1
$$A = \{(1,1), (1,2), (1,3), (1,4)\}$$

B. D1 + D2 = 6
$$B = \{(2,4), (3,3), (4,2)\}$$

$$C. D1 = 2 * D2$$


$$C = \{(2,1), (4,2)\}$$

	1	2	3	4
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Example: 4-sided Dice, Mutual Exclusivity

Die 1

Are *A* and *B* mutually exclusive? How about *B* and *C*?

B.
$$D1 + D2 = 6$$

$$C. D1 = 2 * D2$$

		1	2	3	4
(D1)	1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
	2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
	3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
	4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Idea: Probability

A **probability** is a number (between 0 and 1) describing how likely a particular outcome will happen.

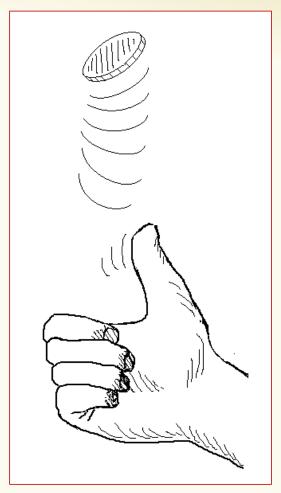
Will define a function

$$\mathbb{P}: \Omega \to [0,1]$$

that maps outcomes $\omega \in \Omega$ to probabilities.

– Also use notation: $\mathbb{P}(\omega) = P(\omega) = \Pr(\omega)$

Example – Coin Tossing


Imagine we toss <u>one</u> coin – outcome can be **heads** or **tails**.

$$\Omega = \{H, T\}$$

P? Depends! What do we want to model?!

Fair coin toss

$$\mathbb{P}(H) = \mathbb{P}(T) = \frac{1}{2} = 0.5$$

Example – Coin Tossing

Imagine we toss <u>one</u> coin – outcome can be **heads** or **tails**.

$$\Omega = \{H, T\}$$

P? Depends! What do we want to model?!

Bent coin toss (e.g., biased or unfair coin) $\mathbb{P}(H) = 0.45$, $\mathbb{P}(T) = 0.55$

Probability space

Definition. A (discrete) **probability space** is a pair (Ω, \mathbb{P}) where:

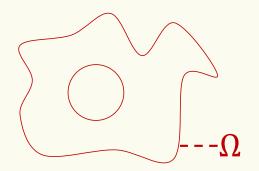
- Ω is a set called the **sample space**.
- P is the **probability measure**,

```
a function \mathbb{P}: \Omega \to [0,1] such that:
```

- $-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$
- $-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$

Probability space

Either finite or infinite countable (e.g., integers)


Definition. A (discrete) **probability space** is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the **sample space**.
- \mathbb{P} is the **probability measure**, a function $\mathbb{P}: \Omega \to [0,1]$ such that:
 - $-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$
 - $-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$

Some outcome must show up

The likelihood (or probability) of each outcome is non-negative.

Set of possible **elementary outcomes**

Specify Likelihood (or probability) of each **elementary outcome**

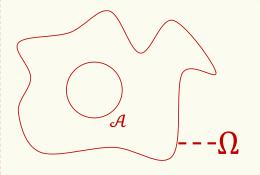
Uniform Probability Space

Definition. A <u>uniform</u> probability space is a pair

 (Ω, \mathbb{P}) such that

$$\mathbb{P}(x) = \frac{1}{|\Omega|}$$

for all $x \in \Omega$.


Examples:

- Fair coin $P(x) = \frac{1}{2}$
- Fair 6-sided die $P(x) = \frac{1}{6}$

Events

Definition. An **event** in a probability space (Ω, \mathbb{P}) is a subset $\mathcal{A} \subseteq \Omega$. Its probability is

$$\mathbb{P}(\mathcal{A}) = \sum_{\omega \in \mathcal{A}} \mathbb{P}(\omega)$$

Convenient abuse of notation: \mathbb{P} is extended to be defined over **sets**. $\mathbb{P}(\omega) = \mathbb{P}(\{\omega\})$

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Example: 4-sided Dice, Event Probability

Think back to 4-sided die. Suppose each die is fair. What is the probability of event B? Pr(B) = ???

B.
$$D1 + D2 = 6$$

B. D1 + D2 = 6
$$B = \{(2,4), (3,3)(4,2)\}$$

	1	2	3	4
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)

Equally Likely Outcomes

If (Ω, P) is a **uniform** probability space, then for any event $E \subseteq \Omega$, then

$$P(E) = \frac{|E|}{|\Omega|}$$

This follows from the definitions of the prob. of an event and uniform probability spaces.

Example – Coin Tossing

Toss a coin 100 times. Each outcome is **equally likely**. What is the probability of seeing 50 heads?

https://pollev.com/ annakarlin185

- (A) $\frac{1}{2}$ (B) $\frac{1}{2^{50}}$
- (D) Not sure

Brain Break

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Axioms of Probability

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events. Note this is applies to **any** probability space (not just uniform)

```
Axiom 1 (Non-negativity): P(E) \ge 0.

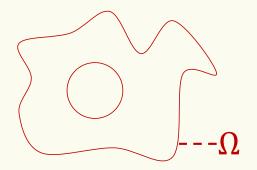
Axiom 2 (Normalization): P(\Omega) = 1

Axiom 3 (Countable Additivity): If E and F are mutually exclusive, then P(E \cup F) = P(E) + P(F)
```

```
Corollary 1 (Complementation): P(E^c) = 1 - P(E).
Corollary 2 (Monotonicity): If E \subseteq F, P(E) \le P(F)
Corollary 3 (Inclusion-Exclusion): P(E \cup F) = P(E) + P(F) - P(E \cap F)
```

Review Probability space

Either finite or infinite countable (e.g., integers)


Definition. A (discrete) **probability space** is a pair (Ω, \mathbb{P}) where:

- Ω is a set called the **sample space**.
- \mathbb{P} is the **probability measure**, a function $\mathbb{P}: \Omega \to [0,1]$ such that:
 - $-\mathbb{P}(\omega) \geq 0$ for all $\omega \in \Omega$
 - $-\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$

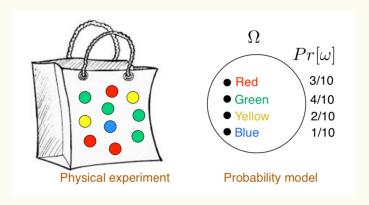
Some outcome must show up

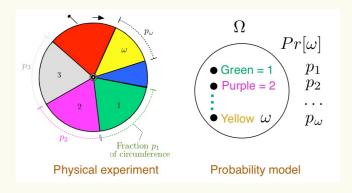
The likelihood (or probability) of each outcome is non-negative.

Set of possible **elementary outcomes**

Specify Likelihood (or probability) of each **elementary outcome**

Non-equally Likely Outcomes


Probability spaces can have non-equally likely outcomes.



More Examples of Non-equally Likely Outcomes

Agenda

- Events
- Probability
- Equally Likely Outcomes
- Probability Axioms and Beyond Equally Likely Outcomes
- More Examples

Example: Dice Rolls

Suppose I had a two, fair, 6-sided dice that we roll once each. What is the probability that we see at least one 3 in the two rolls.

Example: Birthday "Paradox"

Suppose we have a collection of n people in a room. What is the probability that at least 2 people share a birthday? Assuming there are 365 possible birthdays, with uniform probability for each day.

Example: Birthday "Paradox" cont.