CSE 312
 Foundations of Computing II

Lecture 3: More counting!

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Recap (1)

Product Rule: In a sequential process, there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), \ldots, and
- n_{m} choices for the $m^{\text {th }}$ step (given the previous choices), then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{m}$

Application. \# of k-element sequences of distinct symbols (a.k.a. k-permutations) from n-element set is

$$
P(n, k)=n \times(n-1) \times \cdots \times(n-k+1)=\frac{n!}{(n-k)!}
$$

Recap (2)

Combination: If order does not matter, then count the number of ordered objects, and then divide by the number of orderings

Applications. The number of subsets of size k of a set of size n is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Binomial coefficient (verbalized as " n choose k ")

Agenda

- More Examples + Sleuth's Criterion
- Stars and Bars
- Pigeonhole Principle

Quick Review of Cards

- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

Counting Cards I
－ 52 total cards 山しむし \downarrow
－ 13 different ranks $2,3,4,5,6,7,8,9,10, J, Q, K, A$
－ 4 different suits：Hearts，Diamonds，Clubs，Spades
－A straight is five consecutive rank cards of any suit．How many possible straights？

s stead． 4

$$
10 \cdot 4^{5}
$$

Counting Cards II
A flush is a five card hand all of the same suit. How many possible flushes?
\rightarrow choose suit
\rightarrow pick 5 ranks.

$$
\begin{gathered}
4 \\
\binom{13}{5}^{2}
\end{gathered}
$$

$$
4 \cdot\binom{13}{5}
$$

Counting Cards III

- 52 total cards
- 13 different ranks: $2,3,4,5,6,7,8,9,10, J, Q, K, A$
- 4 different suits: Hearts, Diamonds, Clubs, Spades

A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

How many flushes are NOT straights?

\#flustres - \# straight flusher rank fluent and trons suit gall 5 cads $-\quad 10 \cdot 4$

Counting Cards III

- 52 total cards
- 13 different ranks: $2,3,4,5,6,7,8,9,10, J, Q, K, A$
- 4 different suits: Hearts, Diamonds, Clubs, Spades
- A flush is five card hand all of the same suit. How many possible flushes?

$$
4 \cdot\binom{13}{5}=5148
$$

- How many flushes are NOT straights?

$$
\begin{aligned}
& =\text { \#flush }- \text { \#flush and straight } \\
& \left(4 \cdot\binom{13}{5}=5148\right)-10 \cdot 4
\end{aligned}
$$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$ under counting

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$ over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards.

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow}$ over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then choose remaining two cards. $\left(\begin{array}{l}4\end{array}\right) \cdot\left(\begin{array}{l}2\end{array}\right)$

Poll:
A. Correct
B. Overcount
C. Undercount

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences \rightarrow over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

First choose 3 Aces. Then
choose remaining two cards. $\binom{4}{3} \cdot\binom{49}{2}$

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence \rightarrow under counting Many sequences $\boldsymbol{\rightarrow}$ over counting

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

When in doubt, break up into disjoint sets you know how to count, and then use the sum rule.

Sleuth's Criterion (Rudich)

For each object constructed, it should be possible to reconstruct the unique sequence of choices that led to it.

No sequence $\boldsymbol{\rightarrow}$ under counting Many sequences $\boldsymbol{\rightarrow}$ over counting chose 3 the rr 2 morton
A's.
EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

Use the sum rule
= \# 5 card hand containing exactly 3 Aces

+ \# 5 card hand containing exactly 4 Aces

Agenda

- More Examples + Sleuth's Criterion
- Stars and Bars
- Pigeonhole Principle

Example: Kids and Candies

How many ways can we give five indistinguishable candies to these three kids?

Kids + Candies

Kids + Candies

- Idea: count something different

Kids + Candies

Idea: Count something equivalent
5 "stars" for candies, 2 "bars" for dividers.

Kids + Candies

Idea: Count something equivalent
5 "stars" for candies, 2 "bars" for dividers.

Kids + Candies

Kids + Candies

For each candy distribution, there is exactly one corresponding way to arrange the stars and bars.

Conversely, for each arrangement of stars and bars, there is exactly one candy distribution it represents.

Kids + Candies

Hence, the number of ways to distribute candies to the 3 kids is the number of arrangements of stars and bars.

This is

$$
\binom{7}{2}=\binom{7}{5}
$$

Stars and Bars / Divider method

The number of ways to distribute n indistinguishable balls into k distinguishable bins is

$$
\binom{n+k-1}{k-1}=\left(\begin{array}{c}
n+k-1 \\
\underbrace{n}_{k-1} \text { bass = dividers }
\end{array}\right.
$$

Agenda

- More Examples + Sleuth's Criterion
- Stars and Bars
- Pigeonhole Principle

Pigeonhole Principle (PHP): Idea

10 pigeons, 9 pigeonholes

Pigeonhole Principle: Idea

If 11 children have to share 3 cakes, at least one cake must be shared by how many children?

$$
\frac{11}{3}=3 \frac{2}{3}
$$

Pigeonhole Principle - More generally

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\frac{n}{k}$ pigeons!

Proof. Assume there are $<\frac{n}{k}$ pigeons per hole.
Then, there are $<k \frac{n}{k}=n$ pigeons overall.
Contradiction!

$$
<k \cdot \frac{n}{k}=n
$$

Pigeonhole Principle - Better version

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!
$\frac{n}{k}$ in sove trole.

Pigeonhole Principle - Better version

If there are n pigeons in $k<n$ holes, then one hole must contain at least $\left\lceil\frac{n}{k}\right\rceil$ pigeons!

Reason. Can't have fractional number of pigeons

Syntax reminder:

- Ceiling: $\lceil x\rceil$ is x rounded up to the nearest integer (e.g., $\lceil 2.731\rceil=3$)
- Floor: $\lfloor x\rfloor$ is x rounded down to the nearest integer (e.g., $[2.731\rfloor=2$)

Pigeonhole Principle - Example
In a room with 367 people, there are at least two with the same birthday.

Solution:

1. 367 pigeons $=$ people
2. 365 holes $=$ possible birthdays
3. Person goes into hole corresponding to own birthday
4. By PHP, there must be two people with the same birthday

$$
\begin{aligned}
& n=367 \\
& k=365
\end{aligned} \quad \text { pegumbes } \quad\left[\frac{n}{k}\right\rceil
$$

Pigeonhole Principle: Strategy

To use the PHP to solve a problem, there are generally 4 steps:

1. Identify pigeons
2. Identify pigeonholes
3. Specify a rule for assigning pigeons to pigeonholes
4. Apply PHP

$$
\left.\begin{array}{l}
i \bmod 37=j \bmod 37 \\
i-j \bmod 37 \equiv 0
\end{array}\right\}\left[\begin{array}{l}
101.37+5
\end{array}\right.
$$

Pigeonhole Principle - Example (Surprising?)
In every set S of 100 integers, there are at least three elements whose (pairwise) difference is a multiple of 37.

$$
7,10563,10^{25},-101
$$

When solving a PHP problem:

Agenda

- Stars and Bars
- More Examples + Sleuth's Criterion
- Pigeonhole Principle
- Yet More Examples

8 by 8 chessboard
How many ways to place a pawn, a bishop, and a knight so that none are in the same row or column ?

Poll:
A. $\binom{64}{3}$
B. $\binom{8}{3} \cdot\binom{8}{3}$
C. $8^{2} \cdot 7^{2} \cdot 6^{2}$
D. I don't know.
https://pollev.com/ annakarlin185

8 by 8 chessboard
How many ways to place a pawn, a bishop, and a knight so that none are in the same row or column ?

Sequential process:

1. Column for pawn
2. Row for pawn
3. Column for bishop
4. Row for bishop
5. Column for knight
6. Row for knight
$(8 \cdot 7 \cdot 6)^{2}$

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Poll:
A. $8^{2} \cdot 7^{2}$
B. $\binom{8}{2} \cdot\binom{8}{2}$
C. $\frac{8^{2} \cdot 7^{2}}{2}$
D. I don't know.
https://pollev.com/ annakarlin185

Rooks on chessboard

How many ways to place two identical rooks on a chessboard so that they don't share a row or a column

Pretend Rooks are different

1. Column for rook1
2. Row for rook1
3. Column for rook2
4. Row for rook2
$(8 \cdot 7)^{2}$
Remove the order between two rooks

$$
(8 \cdot 7)^{2} / 2
$$

doughnuts

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, Plain
How many ways are there to choose a dozen doughnuts when doughnuts of the same type are indistinguishable?

doughnuts

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, plain
How many ways are there to choose a dozen doughnuts when doughnuts of the same type are indistinguishable?

There is a bijection between sequences of length 16 with 4 bars and 12 stars and the doughnut choices.

doughnuts

You go to top pot to buy a dozen donuts. Your choices are
Chocolate, Lemon-filled, Maple, Glazed, plain
How many ways are there to choose a dozen doughnuts when you want at least 1 of each type?

doughnuts

You go to top pot to buy a dozen donuts. Your choices are Chocolate, Lemon-filled, Maple, Glazed, plain
How many ways are there to choose a dozen doughnuts when you want at least 1 of each type?

Mental process:

1. Place one donut in each flavor bin
2. Choose the remaining 7 donuts without restriction

$$
\binom{7+5-1}{5-1}
$$

Challenge problem

Use the stars and bars approach to count the number of ways to choose k out of n distinct objects if repetition is allowed (but don't care about order)

Tools and concepts

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Stars and bars

