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Statistics: Parameter Estimation - Workflow

Parameter
estima,te
Independent :
. ) ¥
Distribution samples Estlm:j\tlon é
P(x; 0) X0 X, Algorithm
from P(x; 0)

6 = unknown parameter

Example: samples from a normal distribution with unknown mean 6 and variance 1

Observation:. x; = 0.33, x,=-58, ... , x, =45



Likelihood of Different Observations (Discrete case)

___________________________________________________________________________________________________________________________________________________________________

 Definition. The likelihood of independent observations X, ...., x,, is

n
L(X1, .., X, | 0) = HP(xi; 9)
i=1

Maximum Likelihood Estimation (MLE). Given data x4, ...., x,, find
6 such that L(xl, vy Xy | é) is maximized!



General Recipe

1. Input Given n i.i.d. samples x4, ..., x,, from parametric model with
parameter 6.

2. Likelihood Define your likelihood L(x4, ...., x,,| 8).
— For discrete L(x1, ey x| 0) =121 P(x;;0)
— For continuous  L(xy, ....,x,| 0) = [1}L, f(x;; 0)

3. Log Compute In L(x4, ..., x,| 6)
4. Differentiate Compute aia In L(xq,...., %, | 0)
5. Solve for 6 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum,
but we won’t ask you to do that in CSE 312.



When is an estimator good?
Parameter

estimate
Independent //
Distribution _samples Estimation | b
P(x; 6) Xi, o, X, Algorithm n
from P(x; 0)

6 = unknown parameter

_____________________________________________________________________________________________________________________________________________________________________



Three samples from U (0, )



Consistent Estimators & MLE

Distribution

- samples

P(x;0)

6 = unknown parameter

Independent

X, o, Xy

from P(x; 0)

Estimation
Algorithm

Parameter
estimate

_________________________________________________________________________________________________________________________________________________________

Example: samples from a normal distribution with unknown mean 6 and variance 1



Example - Consistency

Normal outcomes X, ..., X,, i.i.d. according to V' (i, 0%) Assume: g% > 0

_____________________________________________________________________

_______________________________________________________________________________________________________________________________________

Definition. An estimator is consistent if lim [E[én] = 0.
i Nn—>00

0,2 is “consistent”
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Example - Consistency

Normal outcomes X, ..., X,, i.i.d. according to V' (i, 0%) Assume: g% > 0

------------------------------------------------------------------------------------------------------------------------------------------

1% 1 <
6~ 13 (- -1 Y-
o n ( l Ii) n n—1 ( l Ii)
1=1 1=1

Population variance - Biased! Sample variance - Unbiased!
0 2 converges to same value as 52, i.e., 0%, asn — oo.

0,2 is “consistent”

e : (But not necessarily

Theorem. MLE estimators are consistent. unbiased) .



Why does it matter?

* When statisticians are estimating a variance from a sample, they
usually divide by n-1 instead of n.

* They and we not only want good estimators (unbiased, consistent)
— They/we also want confidence bounds

* Upper bounds on the probability that these estimators are far the truth
about the underlying distributions

— Confidence bounds are just like what we wanted for our polling problems, but
CLT is usually not the best thing to use to get them (unless the variance is
known)
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A typical day in my life....
|

timet =0
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A typical day in my life

How do we interpret this diagram? This kind of

random process
is called a

Markov Chain

At each time step ¢

— | can be in one of 3 states
* Work, Surf, Email

— If | am in some state s at time ¢

* the labels of out-edges of s give the probabilities of my moving
to each of the states at time ¢t + 1 (as well as staying the same)

— so labels on out-edges sum to 1

e.g. If  am in Email, there is a 50-50 chance | will be in each of Work or Email at

the next time step, but | will never be in state Surf in the next step.
19



This diagram looks vaguely familiar if you took CSE 311...

Markov chains are a special kind of
probabilistic (finite) automaton

The diagrams look a bit like those of
Deterministic Finite Automata (DFAs)
you saw in 311 except that...

* There are no input symbols on the edges

— Think of there being only one kind of input symbol “another tick of the clock”
so no need to mark it on the edge

* They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the
state they are currently in.
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Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 12

2. What is the probability that | am in state s at time 2?

Define variable X(©) to be state | am in at time ¢

Given: In state Work attimet = 0

t 0 1 2

P(X® = work) 1

P(X® = surf) 0

P(X® = Email) 0

21



Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 12

2. What is the probability that | am in state s at time 2?

Define variable X(©) to be state | am in at time ¢

Given: In state Work attimet = 0

t 0 1 2

g = PX®=work) | 1 | 04 =0.4-04+0.6-0.1=0.16+ 0.06 = 0.22

¢ = P(x® = surf) 0 | 0.6 =0.4-0.6+0.6-0.6=0.24+0.36 = 0.60

g = p(x® = Email) | 0 0 |=04-0+0.6-03=0+0.18=0.18
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An organized way to understand the distribution of X ()

(&) (¢

Write as a tuple (q,%), ds > 9g )) a.k.a. arow vector:

(49, 8P, qP]

0 1 2
g = PX®=work) | 1 | 04 =0.4-04+0.6-0.1=0.16+ 0.06 = 0.22
¢ = P(X® = surf) 0 | 0.6 =0.4-06+0.6-0.6=0.24+ 0.36 = 0.60
g = p(x® = Email) | 0 0 |=04-0+0.6-03=0+0.18=0.18
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An organized way to understand the distribution of X ()

(439, ¢, ¢V [04 0.6 ]

0.1 06 0.3

Write as a “tranS|t|on probability matrix” M
* onerow/col per state. Row=now, Col=next
* eachrowsumstol

t 0 1 2

g = PX®=work) | 1 | 0.4 =0.4-04+0.6-0.1=0.16+ 0.06 = 0.22

¢ = P(X® = surf) 0 | 0.6 =0.4-06+0.6-0.6=024+0.36=0.60

g = p(x® = Email) | 0 0 |=04-0+0.6-03=0+0.18=0.18
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An organized way to understand the distribution of X (t)

M
) () _(t 04 0.6 0 _ (t+1) (t+1) (t+1)
.6 [q ydc (4 ] ' ' [qW y Ug » UE ]
o) s e ,1[0.1 0.6 0.3
.- 0.5 0 0.5

-
-

-
-~

.-*" [0.4,0.6,0] [0-4 0.6 0] = [0.22,0.60,0.18 ]

-
-

Vector-matrix
multiplication

0.1 06 0.3
05 0 05

¢ =04 ¢¥=04-04+0.6-01=0.16+0.06=0.22
¢V =06 ¢¥=04-06+0.6-06=024+036=0.60

q5” =0 g =04-0 +0.6-03=0 +0.18=0.18
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An organized way to understand the distribution of X (t)

M
a0, a0) [04 06 07 = (g5, g
0.1 0.6 0.3
05 0 05

¢ 04+qP 0144 05= gtV

Vectc.)r-.mat.rix qéﬁ) 0.6 + qgt) 0.6+ q]gt) 0 = q§t+1)
multiplication - o o )
gy 0 +q¢°-03+q; -05 = qg

Write g(®) = [Ch%)» Cl§t), q,ﬁf)] Thenforallt >0, q®M = q¢+V
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An organized way to understand the distribution of X (t)

&) ()

law > 9s

Vector-matrix
multiplication

o @ @)

Write q(t) — [CIW yds " qEg

]

q® =

M
, qét)] 04 06 01— [q‘gli}“+1)’ §t+1)’ ](5't+1)]
0.1 0.6 03
0.5 0 0.5
0P 04+qP 01+qP - 05= gV
ay 06+q - 06+qy 0 =gV
(t) (t (t+1)

0 +q-03+q" 05

Qw S E

Thenforallt > 0, gtV = gOMm
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By induction ... we can derive

M
04 06 O
[0.1 0.6 0.3]
0.5 0 0.5

q® = q M forall t > 0

29



Another example:

0.5

(2 /3\L Suppose that q

We have M = [

éWhat is g 2

a. [0.3,0.7]
b. [0.6,0.4]
c. [0.7,0.3]
d. [0.5,0.5]
e. [0.4,0.6]

© = [g(”,¢”] = [0.1]

0.7 0.3
0.5 0.5
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Many interesting questions about Markov Chains

1. What is the probability that | am in state s at time 12

2. What is the probability that | am in state s at time 2?

3. What is the probability that | am in state s at some
time t far in the future?

Given: In state Work attimet = 0

q® = q @M forallt > 0

What does M* look like for really big ¢ ?

31



g = q @Mt forallt >0

M! as t grows

3
M M* W S E M W S E
04 06 O W (.22 6 .18 W (.238 .492 .270
[0.1 0.6 0.3] S (2') 42 .33) S (.307 402 .291)
05 0 05 E\4 3 25 E \.335 .450 .215

10

&1 W S E
W [.2940 4413 .2648
S ( 2942 4411 .2(548)
E \.2942 .4413 .2648
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M! as t grows

10
M™ w s &
W [.2940 .4413 .2648
S | .2942 .4411 .2648
E \.2942 .4413 .2648
M®° W
W (.294117647058823
s | 204117647068823
E \ 294117647068823

M30
W

S
E

A41176470588235
A441176470588235
A441176470588235

0.1 0.6 0.3

rl4' 06 O
0.5

05 O

1%
29411764705
29411764706

|

44117647059
44117647058

29411764706 .44117647059

S

E

264705882352941
264705882352941
264705882352941

g = q @Mt forallt >0

3
S E M 1% S 1D
6 .18 W (.238 .492 .270
A2 33 S S07  .402  .291
3 .25 E 335 450 .215
F
.26470588235
26470588235
26470588235
What does this

say about g(©?

33
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t
M*" as t grows g6 = q(© 60

W S E
[q$), q§0), q]go)]. 204117647058823 .441176470588235 .264705882352941\ _  (60) _(60) (60)]
204117647068823 .441176470588235 .264705882352041 |~ Yw »4s 4k
294117647068823 .441176470588235 .264705882352941
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Observation

If g1 = g(O then it will never change again!

Since forallt > 0, gtV = g®OMm
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Observation

If g1 = g(O then it will never change again!

Since forallt > 0, gtV = g®OMm

Called a stationary distribution and has a special name

T = (T, T, Tg)

Solution to 1 T M

37



Solving for Stationary Distribution

4 6 0 Stationary Distribution satisfies
M=|1 .6 .3 « m = mM,where 1= (my, 15, TE)
S 05 * Ty +tngt+mng=1
10 15 9
> Ty = Sa0 Mg= a0 M= o

Ast — oo, g = m no matter what distribution g(* is !!
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Markov Chains in general

A set of nstates {1, 2,3, ... n}

The state at time t is denoted by X (©)
A transition matrix M, dimension nX n

M;=PX =j|x® =7
t t .
g® = (qit), qgt), ., 0Py where ql.( l_px® =)
Transition: LTP = q¢¢*D = g M so g(® = q(© mt

39



Stationary Distribution of a Markov Chain

Definition. The stationary distribution of a Markov Chain with n

- states is the n-dimensional row vector it (which must be a probability
~ distribution; that is, it must be nonnegative and sum to 1) such that

| M =1

Intuition: Distribution over states at next step is the same as the
distribution over states at the current step

41



Fundamental Theorem of Markov Chains

Recall gV is the distribution of being at each state at time ¢
computed by g = q(® Mt. As t gets large g ~ q{t*D,

________________________________________________________________________________________________________________________________________________________________

Fundamental Theorem of Markov Chains : For a Markov Chain that is
- aperiodic” and irreducible®, with transition probabilities M and for any

starting distribution g(*) over the states
lim qOMt =

t— oo

where 7 is the stationary distribution of M (i.e., tM = 1)

“These concepts are beyond us but they turn out to cover a very large class of
Markov chains of practical importance.
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Another Example: Random Walks

Suppose we start at node 1, and at each step : 2
transition to a neighboring node with equal

probability. ‘

This is called a “random walk” on this graph. ‘ ’
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Example: Random Walks on an Undirected Graph

Start by defining transition probs.

M;; = P(X®D = | x® =)

From
From
From
From
From

a A W INR

To 1

To 2

To 3

To 4

To 5

49
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Markov Chain Monte Carlo

* Technique for sampling from high dimensional distributions

* Computational method for studying large, very complex
sets.

* In some cases, a technique for getting good approximate
solutions to complex optimization problems

* Used in every field of science and engineering

* “To someone working in my part of the world, asking about
applications of MCMC is like asking about applications of the
quadratic formula. The results are really used in every aspect
of scientific inquiry” --- Persi Diaconis, Stanford
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MCMC

* Idea: simulate a random walk that moves among possible
configurations of a system and will converge to a useful
distribution over these configurations.

* Example: Knapsack Problem (NP-complete)

— Input: collection of nitems, for each item
* Value
* Weight
— Goal: output subset S of items of maximum total value, that has
total weight < W.

52



MCMC for knapsack

* Define a Markov chain with states being possible solutions
and transition probabilities that have higher probabilities on
“good solutions”

* Simulate the Markov chain for many iterations until reach a
“good” state.
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MCMC for Knapsack Problem

Algorithm 1 MCMC for 0-1 Knapsack Problem

1: subset « vector of n zeros (indexed by 0 to n — 1), where subset is always a binary vector in {0,1}" that
represents whether or not we have each item. (This means that we initially start with an empty knapsack).
2: best_subset < subset
3. fort = 1,..., NUM_ITER do
4: k < a uniformly random integer in {0,1,...,n — 1}.
new_subset « subset but with subset[k] flipped (0 — 1 or 1 — 0).
A < value(new_subset) — value(subset)
if new_subset satisfies weight constraint (total weight < W) then
if A >0 OR (T > 0 AND Unif(0,1) < e®/T) then
subset <— new_subset
10: if value(subset) > value(best_subset) then
11: best_subset < subset

©oeNOO







