
CSE 312

Foundations of Computing II
Lecture 24: Finish MLE, Start Markov Chains
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Agenda

• Wrap up MLE
– Unbiased and Consistent Estimators
– Intuition and Bigger Picture

• Markov Chains
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Statistics: Parameter Estimation – Workflow
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Distribution
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋(
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃

Parameter 
estimate

𝜃 = unknown parameter

Example: samples from a normal distribution with unknown mean 𝜃 and variance 1

Observation: . 𝑥"= 0.33, 𝑥#= −5.8, … , 𝑥$ = 4.5



Likelihood of Different Observations
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Definition. The likelihood of independent observations 𝑥', … . , 𝑥( is

ℒ 𝑥', … . , 𝑥( 𝜃 =.
)*'

(

𝑃(𝑥); 𝜃)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data 𝑥', … . , 𝑥(, find 
*𝜃 such that  ℒ 𝑥', … . , 𝑥( *𝜃 is maximized!

*𝜃 = argmax
+

ℒ 𝑥', … . , 𝑥( 𝜃



General Recipe

1. Input Given 𝑛 i.i.d. samples 𝑥!, … , 𝑥" from parametric model with 
parameter 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥!, … . , 𝑥" 𝜃 .

– For discrete ℒ 𝑥!, … . , 𝑥" 𝜃 = ∏#$!
" 𝑃 𝑥# ; 𝜃

– For continuous ℒ 𝑥!, … . , 𝑥" 𝜃 = ∏#$!
" 𝑓 𝑥# ; 𝜃

3. Log Compute ln ℒ 𝑥!, … . , 𝑥" 𝜃

4. Differentiate Compute #
#$
ln ℒ 𝑥!, … . , 𝑥" 𝜃

5. Solve for *𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.
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When is an estimator good?
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Definition. An estimator of parameter 𝜃 is an unbiased estimator if

𝔼 *𝜃( = 𝜃.

Distribution
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋(
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃(

Parameter 
estimate

𝜃 = unknown parameter

Note: This expectation is over the samples 𝑋", … , 𝑋$



Three samples from 𝑈(0, 𝜃)
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Consistent Estimators & MLE
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Definition. An estimator is unbiased if 𝔼 *𝜃( = 𝜃 for all 𝑛 ≥ 1.

Distribution
𝑃(𝑥; 𝜃)

Independent 
samples 
𝑋', … , 𝑋(
from 𝑃(𝑥; 𝜃)

Estimation
Algorithm

*𝜃(

Parameter 
estimate

𝜃 = unknown parameter

Example: samples from a normal distribution with unknown mean 𝜃 and variance 1



Example – Consistency 
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Normal outcomes 𝑋', … , 𝑋( i.i.d. according to 𝒩(𝜇, 𝜎,)

;Θ-% =
1
𝑛
=
)*'

(

𝑋) − ;Θ.
,

Assume: 𝜎, > 0

Population variance – Biased!

;Θ-% is “consistent”

Definition. An estimator is consistent if lim
(→0

𝔼 *𝜃( = 𝜃.



Example – Consistency 

11

Normal outcomes 𝑋', … , 𝑋( i.i.d. according to 𝒩(𝜇, 𝜎,)

;Θ-% =
1
𝑛
=
)*'

(

𝑋) − ;Θ.
,

Assume: 𝜎, > 0

𝑆(, =
1

𝑛 − 1
=
)*'

(

𝑋) − ;Θ.
,

Sample variance – Unbiased!

;Θ-% converges to same value as 𝑆(,, i.e., 𝜎,, as 𝑛 → ∞.

Population variance – Biased!

;Θ-% is “consistent”

Theorem. MLE estimators are consistent.
(But not necessarily 
unbiased)



Why does it matter?

• When statisticians are estimating a variance from a sample, they 
usually divide by 𝑛−1 instead of 𝑛. 

• They and we not only want good estimators (unbiased, consistent)
– They/we also want confidence bounds

• Upper bounds on the probability that these estimators are far the truth 
about the underlying distributions

– Confidence bounds are just like what we wanted for our polling problems, but 
CLT is usually not the  best thing to use to get them (unless the variance is 
known)
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Agenda

• Wrap up MLE
– Unbiased and Consistent Estimators
– Intuition and Bigger Picture

• Markov Chains
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A typical day in my life….
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time 𝑡 = 0



A typical day in my life

How do we interpret this diagram?

At each time step 𝑡
– I can be in one of 3 states
• Work, Surf, Email

– If I am in some state 𝑠 at time 𝑡
• the labels of out-edges of 𝑠 give the probabilities of my moving 

to each of the states at time 𝑡 + 1 (as well as staying the same)
– so labels on out-edges sum to 1
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e.g. If I am in Email, there is a 50-50 chance I will be in each of Work or Email at 
the next time step, but I will never be in state Surf in the next step.

This kind of 
random process 
is called a 
Markov Chain



This diagram looks vaguely familiar if you took CSE 311 …
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Markov chains are a special kind of 
probabilistic (finite) automaton

The diagrams look a bit like those of 
Deterministic Finite Automata (DFAs) 
you saw in 311 except that…
• There are no input symbols on the edges

– Think of there being only one kind of input symbol “another tick of the clock”      
so no need to mark it on the edge

• They have multiple out-edges like an NFA, except that they come with probabilities

But just like DFAs, the only thing they remember about the past is the 
state they are currently in.



Many interesting questions about Markov Chains
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1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2?

Given: In state Work at time 𝑡 = 0

Define variable 𝑋 4 to be state I am in at time 𝑡

𝑃(𝑋 % = Work)

𝑃(𝑋 % = Surf)

𝑃(𝑋 % = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎



Many interesting questions about Markov Chains
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1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2?

Given: In state Work at time 𝑡 = 0

Define variable 𝑋 4 to be state I am in at time 𝑡

𝑃(𝑋 % = Work)

𝑃(𝑋 % = Surf)

𝑃(𝑋 % = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖

𝑞&
% =

𝑞'
% =

𝑞(
% =



An organized way to understand the distribution of 𝑋 ,
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𝑃(𝑋 % = Work)

𝑃(𝑋 % = Surf)

𝑃(𝑋 % = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖

𝑞&
% =

𝑞'
% =

𝑞(
% =

Write as a tuple (𝑞&
% , 𝑞'

% , 𝑞(
% ) a.k.a. a row vector:

[𝑞&
% , 𝑞'

% , 𝑞(
% ]



An organized way to understand the distribution of 𝑋 ,

24

𝑃(𝑋 % = Work)

𝑃(𝑋 % = Surf)

𝑃(𝑋 % = Email)

𝑡 0 1 2

𝟏

𝟎

𝟎

𝟎. 𝟒

𝟎. 𝟔

𝟎

= 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

= 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

= 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖

𝑞&
% =

𝑞'
% =

𝑞(
% =

[𝑞&
% , 𝑞'

% , 𝑞(
% ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

Write as a “transition probability matrix” 𝑴
• one row/col per state.  Row=now, Col=next
• each row sums to 1

𝑴



An organized way to understand the distribution of 𝑋 ,
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[0.4, 0.6, 0]

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

= [𝑞&
%)" , 𝑞'

%)" , 𝑞(
%)" ]

𝑞'
" = 𝟎. 𝟔

𝑞(
" = 𝟎

𝑞&
" = 𝟎. 𝟒

𝑞'
# = 𝟎. 𝟒 ⋅ 0.6 + 𝟎. 𝟔 ⋅ 0.6 = 0.24 + 0.36 = 𝟎. 𝟔𝟎

𝑞(
# = 𝟎. 𝟒 ⋅ 0 + 𝟎. 𝟔 ⋅ 0.3 = 0 + 0.18 = 𝟎. 𝟏𝟖

𝑞&
# = 𝟎. 𝟒 ⋅ 0.4 + 𝟎. 𝟔 ⋅ 0.1 = 0.16 + 0.06 = 𝟎. 𝟐𝟐

𝑴

0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

[𝑞&
% , 𝑞'

% , 𝑞(
% ]

= [0.22, 0.60, 0.18 ]
Vector-matrix 
multiplication



An organized way to understand the distribution of 𝑋 ,
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𝑞&
% ⋅ 0.4 + 𝑞'

% ⋅ 0.1 + 𝑞(
% ⋅ 0.5 = 𝑞&

%)"

[𝑞&
% , 𝑞'

% , 𝑞(
% ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞&
%)" , 𝑞'

%)" , 𝑞(
%)" ]

Vector-matrix 
multiplication

𝑞&
% ⋅ 0.6 + 𝑞'

% ⋅ 0.6 + 𝑞(
% ⋅ 0 = 𝑞'

%)"

𝑞&
% ⋅ 0 + 𝑞'

% ⋅ 0.3 + 𝑞(
% ⋅ 0.5 = 𝑞(

%)"

𝑴

Write 𝒒 % = [𝑞&
% , 𝑞'

% , 𝑞(
% ] Then for all 𝑡 ≥ 0, 𝒒 % 𝑴 = 𝒒 %)"



An organized way to understand the distribution of 𝑋 ,
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𝑞&
% ⋅ 0.4 + 𝑞'

% ⋅ 0.1 + 𝑞(
% ⋅ 0.5 = 𝑞&

%)"

[𝑞&
% , 𝑞'

% , 𝑞(
% ] 0.4 0.6 0

0.1 0.6 0.3
0.5 0 0.5

= [𝑞&
%)" , 𝑞'

%)" , 𝑞(
%)" ]

Vector-matrix 
multiplication

𝑞&
% ⋅ 0.6 + 𝑞'

% ⋅ 0.6 + 𝑞(
% ⋅ 0 = 𝑞'

%)"

𝑞&
% ⋅ 0 + 𝑞'

% ⋅ 0.3 + 𝑞(
% ⋅ 0.5 = 𝑞(

%)"

𝑴

Write 𝒒 % = [𝑞&
% , 𝑞'

% , 𝑞(
% ] Then for all 𝑡 ≥ 0,  𝒒 %)" = 𝒒 % 𝑴

So 𝒒 " = 𝒒 * 𝑴
𝒒 # =
…



By induction … we can derive
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 , = 𝒒 - 𝑴, for all 𝑡 ≥ 0



Another example:
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Clear Overcast

0.7 0.3 0.5

0.5

Suppose that 𝒒 * = 𝑞+
* , 𝑞,

* = [0,1]

We have 𝑴 = 0.7 0.3
0.5 0.5

Poll: www.slido.com/1692973 
What is 𝒒 # ?
a. 0.3, 0.7
b. 0.6, 0.4
c. 0.7, 0.3
d. 0.5, 0.5
e. 0.4, 0.6



Many interesting questions about Markov Chains
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1. What is the probability that I am in state 𝑠 at time 1?

2. What is the probability that I am in state 𝑠 at time 2?

3. What is the probability that I am in state 𝑠 at some 
time 𝑡 far in the future?

Given: In state Work at time 𝑡 = 0

𝒒 , = 𝒒 - 𝑴, for all 𝑡 ≥ 0

What does 𝑴4 look like for really big 𝑡 ? 



𝑴, as 𝑡 grows
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 4 = 𝒒 ; 𝑴4 for all 𝑡 ≥ 0

𝑴# 𝑴-

𝑴"*



𝑴, as 𝑡 grows
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0.4 0.6 0
0.1 0.6 0.3
0.5 0 0.5

𝑴

𝒒 4 = 𝒒 ; 𝑴4 for all 𝑡 ≥ 0

𝑴# 𝑴-

𝑴"* 𝑴-*

𝑴.*

What does this 
say about 𝒒 , ?



𝑴, as 𝑡 grows
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𝒒 <; = 𝒒 ; 𝑴<;

= [𝑞&
.* , 𝑞'

.* , 𝑞(
.* ][𝑞&

* , 𝑞'
* , 𝑞(

* ] ⋅



Observation

If 𝒒(,/0) = 𝒒(,) then it will never change again!
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Since for all 𝑡 ≥ 0,  𝒒 %)" = 𝒒 % 𝑴



Observation

If 𝒒(,/0) = 𝒒(,) then it will never change again!

Called a stationary distribution and has a special name 
𝝅 = (𝜋2 , 𝜋3 , 𝜋4)

Solution to 𝝅 = 𝝅𝑴 37

Since for all 𝑡 ≥ 0,  𝒒 %)" = 𝒒 % 𝑴



Solving for Stationary Distribution
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𝑴 =
.4 .6 0
.1 .6 .3
.5 0 .5

As 𝑡 → ∞, 𝒒(4) → 𝝅 no matter what distribution 𝒒 ; is !!

Stationary Distribution satisfies
• 𝝅 = 𝝅𝑴, where  𝝅 = (𝜋= , 𝜋>, 𝜋?)
• 𝜋= + 𝜋> + 𝜋? = 1

è 𝜋= = ';
@A
, 𝜋>=

'B
@A
, 𝜋?=

C
@A



Markov Chains in general

• A set of 𝑛 states {1, 2, 3, … 𝑛}
• The state at time 𝑡 is denoted by 𝑋(,)

• A transition matrix 𝑴, dimension 𝑛× 𝑛
𝑴𝑖𝑗 = 𝑃 𝑋 ,/0 = 𝑗 𝑋(,) = 𝑖)

• 𝒒(,) = (𝑞0
, , 𝑞5

, , … , 𝑞6
, ) where 𝑞7

, = 𝑃(𝑋(,) = 𝑖)
• Transition: LTP ⇒ 𝒒(,/0) = 𝒒(,) 𝑴 so 𝒒(,) = 𝒒(-) 𝑴,

39



Stationary Distribution of a Markov Chain
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Definition. The stationary distribution of a Markov Chain with 𝑛
states is the 𝑛-dimensional row vector 𝝅 (which must be a probability 
distribution; that is, it must be nonnegative and sum to 1) such that

𝝅𝑴 = 𝝅

Intuition: Distribution over states at next step is the same as the 
distribution over states at the current step



Fundamental Theorem of Markov Chains
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Recall 𝒒(,) is the distribution of being at each state at time 𝑡
computed by 𝒒(,) = 𝒒(-)𝑴,.  As 𝑡 gets large 𝒒 , ≈ 𝒒 ,/0 .

Fundamental Theorem of Markov Chains :  For a Markov Chain that is 
aperiodic* and irreducible*, with transition probabilities 𝑴 and for any 
starting distribution 𝒒(;) over the states

lim
4→0

𝒒(;)𝑴4 = 𝝅
where 𝝅 is the stationary distribution of 𝑴 (i.e., 𝝅𝑴 = 𝝅 )

*These concepts are beyond us but they turn out to cover a very large class of               
Markov chains of practical importance.



Another Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

This is called a “random walk” on this graph.

48

1 2

3 5

4



Example: Random Walks on an Undirected Graph
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To

 1

To
 2

To
 3

To
 4

To
 5

From 1
From 2
From 3

From 5
From 4

Start by defining transition probs.

1 2

3 5

4

𝑴/0 = 𝑃 𝑋 %)" = 𝑗 | 𝑋 % = 𝑖

0
1/2
1/2
0
0

1/2
0
0
1/3
0

1/2
0
0
1/3
0

0
1/2
1/2
0
1

0
0
0
1/3
0
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Markov Chain Monte Carlo

• Technique for sampling from high dimensional distributions
• Computational method for studying large, very complex 

sets.
• In some cases, a technique for getting good approximate 

solutions to complex optimization problems
• Used in every field of science and engineering
• “To someone working in my part of the world, asking about 

applications of MCMC is like asking about applications of the 
quadratic formula. The results are really used in every aspect 
of scientific inquiry” --- Persi Diaconis, Stanford
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MCMC

• Idea: simulate a random walk that moves among possible 
configurations of a system and will converge to a useful
distribution over these configurations.

• Example: Knapsack Problem (NP-complete)
– Input: collection of n items, for each item 

• Value 
• Weight

– Goal: output subset S of items of maximum total value, that has 
total weight < W.
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MCMC for knapsack

• Define a Markov chain with states being possible solutions 
and transition probabilities that have higher probabilities on 
“good solutions”

• Simulate the Markov chain for many iterations until reach a 
“good” state.
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MCMC for Knapsack Problem

54
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