CSE 312 Foundations of Computing II

22: Maximum Likelihood Estimation (MLE)

CSE 422

www.slido.com/1692973

Agenda

- Idea: Estimation <
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Recap Formalizing Polls

We assume that poll answers $X_1, ..., X_n \sim \text{Ber}(p)$ i.i.d. for <u>unknown</u> p

Goal: Estimate *p*

We did this by computing $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Recap More generally ...

In estimation we often

- Assume: we know the type of the random variable that we are observing independent samples from
 - We just don't know the parameters, e.g.
 - the bias p of a random coin Bernoulli(p)
 - The arrival rate λ for the Poisson(λ) or Exponential(λ)
 - The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Example: coin flip distribution with unknown θ = probability of heads

Goal: Estimate

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence of flips

TTHTHTTH

Given this data, what would you estimate *p* is?

Poll: www.slido.com/1692973

a. 1/2
b. 5/8
c. 3/8
d. 1/4

How can you argue "objectively" that this your estimate is the best estimate?

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Say we see outcome *HHTHH*.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

6 maximizes What value of this fn? 50

10

6"(1-6)

Likelihood

Say we see outcome *HHTHH*.

 $\mathcal{L}(HHTHH \mid \theta) = \theta^4(1-\theta)$

Probability of observing the outcome *HHTHH* if θ = prob. of heads.

For a fixed outcome HHTHH, this is a function of θ .

Example: Say we see outcome *HHTHH*.

 $\mathcal{L}(HHTHH \mid \theta) = P(H;\theta) \cdot P(H;\theta) \cdot P(T;\theta) \cdot P(H;\theta) \cdot P(H;\theta) = \theta^{4}(1-\theta)$

12

- Fixed θ : probability $\prod_{i=1}^{n} P(x_i; \theta)$ that dataset x_1, \dots, x_n is sampled by distribution with parameter θ – A function of x_1, \dots, x_n
- Fixed $x_1, ..., x_n$: likelihood $\mathcal{L}(x_1, ..., x_n \mid \theta)$ that parameter θ explains dataset $x_1, ..., x_n$.
 - A function of θ

Likelihood vs. Probability

These notions are the same number if we fix <u>both</u> x_1, \dots, x_n and θ , but different role/interpretation

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1,\ldots,x_n|\theta) = \theta^{n_H} (1-\theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} \mathcal{L}(x_1, \dots, x_n | \theta) = ???$$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we use the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations x_1, \dots, x_n is $\ln \mathcal{L}(x_1, \dots, x_n | \theta) = \ln \prod_{i=1}^n P(x_i; \theta) = \sum_{i=1}^n \ln P(x_i; \theta)$

Useful log properties

 $\frac{\ln(ab) = \ln(a) + \ln(b)}{\ln(a/b) = \ln(a) - \ln(b)}$ $\ln(a^b) = b \cdot \ln(a)$

Example – Coin Flips

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ $\ln(a^b) = b \cdot \ln(a)$

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - i.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_{1}, \dots, x_{n} | \theta) = \theta^{n_{H}} (1 - \theta)^{n_{T}}$$

$$\ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = n_{H} \ln \theta + n_{T} \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta}$$
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_{1}, \dots, x_{n} | \theta) = 0$
So we need $n_{H} \cdot \frac{1}{\theta} - n_{T} \cdot \frac{1}{1 - \theta} = 0$

$$\int_{10}^{10} \theta^{n_{H}} = 0$$

General Recipe

1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .

Ben (O) Poissa (O)

- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE 🗲

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

$f(x \in [x;,x;+dx]) \not\approx f(x;)dx$

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Odds and ends

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ? [i.e., we are given the promise that the variance is 1]

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

29

1 12

 $+(x_{i}) = \frac{1}{\sqrt{2\pi}}$

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a/b) = \ln(a) - \ln(b)$ **Example – Gaussian Parameters** $\ln(a^b) = b \cdot \ln(a)$ Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$ **Goal:** estimate θ , the expectation $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}} \right)$ $(x_i - \theta)^2$ $\ln 2\pi$ $\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n$ 30

Example – Gaussian Parameters

Goal: estimate θ = expectation

n

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^{n} \frac{(x_i - \theta)^2}{2}$$
Note: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$

$$\frac{d}{d \theta} \frac{LL}{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{d}{d \theta} \frac{LL}{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{d}{d \theta} \frac{LL}{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{d}{d \theta} \frac{LL}{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{d}{d \theta} \frac{LL}{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{d}{d \theta} \frac{LL}{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - \theta) \cdot (-1) = \theta - x_i$$

Example – Gaussian Parameters

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Note: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$
 $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta) = \sum_{i=1}^n x_i - n\theta$
So... solve $\sum_{i=1}^n x_i - n\hat{\theta} = 0$ for $\hat{\theta}$

In other words, MLE is the sample mean of the data.

32

Next: *n* samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. <u>Most likely</u> μ and σ^2 ?

$$\mathcal{L} = \prod_{i=1}^{n} f(x_i; \theta_i, \theta_i)$$

$$\lim_{\substack{n(ab) = \ln(a) + \ln(b) \\ \ln(ab) = \ln(a) - \ln(b) \\ \ln(a^b) = b \cdot \ln(a)}$$
Normal outcomes x_1, \dots, x_n
Goal: estimate $\theta_1 = \mu$ = expectation and $\theta_2 = \sigma^2$ = variance
$$\int_{\substack{n(a^b) = b \cdot \ln(a)}} \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) = \left(\frac{1}{\sqrt{2\pi\theta_2}} \right)^n \prod_{i=1}^n e^{\frac{(x_i - \theta_1)^2}{2\theta_2}}$$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) = \left(\frac{1}{\sqrt{2\pi\theta_2}} \right)^n \prod_{i=1}^n e^{\frac{(x_i - \theta_1)^2}{2\theta_2}}$$

Two-parameter estimation

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) = -\frac{\ln(2\pi \theta_2)}{2} - \sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\theta_2}$$

Find pair $\hat{\theta}_1, \hat{\theta}_2$ that maximizes $\ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2)$

$$\frac{\partial}{\partial \Theta_{1}} LL = 0$$

35

Two-parameter estimation

$$\ln \mathcal{L}(x_1, \dots, x_n \mid \theta_1, \theta_2) = -\frac{\ln(2\pi \theta_2)}{2} - \sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\theta_2}$$

We need to find a solution $\hat{\theta}_1$, $\hat{\theta}_2$ to

$$\frac{\partial}{\partial \theta_1} \ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) = 0$$
$$\frac{\partial}{\partial \theta_2} \ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) = 0$$

MLE for Expectation

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) = -n \frac{\ln(2\pi \theta_2)}{2} - \sum_{i=1}^n \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_1} \ln \mathcal{L}(x_1, \dots, x_n | \theta_1, \theta_2) =$$

What about the variance?

Xn

MLE for Variance

$$\ln \mathcal{L}(x_{1}, \dots, x_{n} \mid \hat{\theta}_{1}, \theta_{2}) = -n \frac{\ln(2\pi \theta_{2})}{2} - \sum_{i=1}^{n} \frac{(x_{i} - \hat{\theta}_{1})^{2}}{2\theta_{2}} \mathbf{1}$$
$$= -n \frac{\ln 2\pi}{2} - n \frac{\ln \theta_{2}}{2} - \frac{1}{2\theta_{2}} \sum_{i=1}^{n} (x_{i} - \hat{\theta}_{1})^{2}$$
$$\frac{\partial}{\partial \theta_{2}} \ln \mathcal{L}(x_{1}, \dots, x_{n} \mid \hat{\theta}_{1}, \theta_{2}) = -\frac{n}{2\theta_{2}} + \frac{1}{2\theta_{2}^{2}} \sum_{i=1}^{n} (x_{i} - \hat{\theta}_{1})^{2} = 0$$

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\theta}_1)^2$$

In other words, MLE of variance is the population variance of the data. (Note that this is not called sample variance!)

Likelihood – Continuous Case

Definition. The **likelihood** of independent observations x_1, \dots, x_n is $\mathcal{L}(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$

Normal outcomes x_1, \ldots, x_n

MLE estimator for expectation

MLE estimator for **variance**

General Recipe

- 1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .
- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \vec{\theta})$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \overline{\theta})$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \vec{\theta})$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture

Three samples from $U(0, \theta)$

Example – Coin Flips

Recall:
$$\hat{\theta}_{\mu} = \frac{n_H}{n}$$

Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails

-[\$]

Fact. $\hat{\theta}_{\mu}$ is unbiased

i.e., $\mathbb{E}[\hat{\theta}_{\mu}] = p$, where p is the probability that the coin turns out head.

Why?

Because $\mathbb{E}[n_H] = np$ when p is the true probability of heads.

Example – Consistency

Normal outcomes $X_1, ..., X_n$ i.i.d. according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{\Theta}_{\mu})^2$$

Population variance – Biased!

 $\widehat{\Theta}_{\sigma^2}$ is "consistent"

Example – Consistency

Normal outcomes $X_1, ..., X_n$ i.i.d. according to $\mathcal{N}(\mu, \sigma^2)$ Assume: $\sigma^2 > 0$

$$\widehat{\Theta}_{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{\Theta}_{\mu})^2$$

Population variance – Biased!

Sample variance – Unbiased!

 $\widehat{\Theta}_{\sigma^2}$ converges to same value as S_n^2 , i.e., σ^2 , as $n \to \infty$. $\widehat{\Theta}_{\sigma^2}$ is "consistent"

Why does it matter?

- When statisticians are estimating a variance from a sample, they usually divide by n-1 instead of n.
- They and we not only want good estimators (unbiased, consistent)
 - They/we also want confidence bounds
 - Upper bounds on the probability that these estimators are far the truth about the underlying distributions
 - Confidence bounds are just like what we wanted for our polling problems, but CLT is usually not the best thing to use to get them (unless the variance is known)

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture 🗨

Another approach to parameter estimation

Assume we have prior distribution over what values of θ are likely. In other words...

assume that we know $P(\theta) = \text{probability } \theta$ is used, for every θ .

Maximum a-posteriori probability estimation (MAP)

$$\hat{\theta}_{MAP} = \operatorname{argmax}_{\theta} \frac{\mathcal{L}(x_1, \dots, x_n | \theta) \cdot P(\theta)}{\sum_{\theta} \mathcal{L}(x_1, \dots, x_n | \theta) \cdot P(\theta)}$$
$$= \operatorname{argmax}_{\theta} \mathcal{L}(x_1, \dots, x_n | \theta) \cdot P(\theta)$$

Note when prior is constant, you get MLE!

MLE and MAP in AI and Machine Learning

- MLE and MAP can be defined over distributions that are not the nice well-defined families as we have been considering here
 - e.g. $\vec{\theta}$ might be the vector of parameters in some Neural Net or unknown entries in some Bayes Net.
 - A variety of optimization methods and heuristic methods are used to compute/approximate them.

General Recipe

1. Input Given *n* i.i.d. samples $x_1, ..., x_n$ from parametric model with parameter θ .

- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.