CSE 312
Foundations of Computing II
22: Maximum Likelihood Estimation (MLE)

$$
\text { CSE } 422
$$

www.slido.com/1692973

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

Probability vs Statistics

Recap Formalizing Polls

We assume that poll answers $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d. for unknown p

Goal: Estimate p

We did this by computing $\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

Recap More generally ...

In estimation we often

- Assume: we know the type of the random variable that we are observing independent samples from
- We just don't know the parameters, e.g.
- the bias p of a random coin Bernoulli (p)
- The arrival rate λ for the Poisson (λ) or Exponential (λ)
- The mean μ and variance σ of a normal $\mathcal{N}(\mu, \sigma)$
- Goal: find the "best" parameters to fit the data

Statistics: Parameter Estimation - Workflow

Example: coin flip distribution with unknown $\theta=$ probability of heads
Observation: HTTHHHTHTHTTTTHT HTTTTTHT

Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips, and see the following sequence of flips

TTHTHTTH

Given this data, what would you estimate p is?

Poll: www.slido.com/1692973
a. $1 / 2$
b. $5 / 8$
c. $3 / 8$
d. $1 / 4$

How can you argue
"objectively" that this your estimate is the best estimate?

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE
bilelibood
unwon aram θ
Likelihood

$$
\operatorname{Pr}\left(\text { see this data } \frac{\left.\frac{(H+T+H}{y} \text { para in } \theta\right)}{}\right.
$$

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (a.k.a. p) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

$$
=\theta^{4}(1-\theta)
$$

What value of Q maximizes this fin?

$$
\begin{aligned}
\frac{d}{d \theta}\left(\theta^{4}-\theta^{5}\right)= & 4 \theta^{3}-5 \theta^{4} \\
& 4 \theta^{3}=5 \theta^{4}=0 \\
& 4 \theta^{3}=5 \theta^{4} / \theta^{3} \\
& \hat{\theta}^{4}=5 \theta^{3} \\
& =\frac{4}{5}
\end{aligned}
$$

Likelihood

Say we see outcome HHTHH.
$\mathcal{L}($ HHTHH $\mid \theta)=\theta^{4}(1-\theta)$
Probability of observing the outcome HHTHH if $\theta=$ prob. of heads.

For a fixed outcome HHTHH, this is a function of θ.

Max Prob of seeing HHTHH

$P(x)$
 $P_{X}(x)$

$P(x ; \theta)$

Likelihood of Different Observations
(Discrete case)

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Example:
Say we see outcome HHTHH.
$\underline{\mathcal{L}(H H T H H \mid \theta)}=\underline{P(H ; \theta)} \cdot \underline{P(H ; \theta)} \cdot \underline{P(T ; \theta)} \cdot \underline{P(H ; \theta)} \cdot \underline{P(H ; \theta)}=\underline{\theta^{4}(1-\theta)}$

$$
x_{1} x_{2}, \ldots x_{n}
$$

Likelihood vs. Probability $\quad P(x ; \theta)$

- Fixed θ : probability $\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$ that dataset x_{1}, \ldots, x_{n} is sampled by distribution with parameter θ

\author{

- A function of x_{1}, \ldots, x_{n}
}
- Fixed x_{1}, \ldots, x_{n} : likelihood $\mid \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ that parameter θ explains dataset x_{1}, \ldots, x_{n}.
- A function of θ

These notions are the same number if we fix both x_{1}, \ldots, x_{n} and θ, but different role/interpretation

Likelihood of Different Observations

$$
P(x ; \theta)=P\left(\begin{array}{l}
\text { (Discrete case) } \\
X=x) \\
\text { When panam is } \theta
\end{array}\right.
$$

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)
$$

Maximum Likelihood Estimation (MLE). Given data x_{1}, \ldots, x_{n}, find $\hat{\theta}$ such that $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Example - Coin Flips data Isa

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with $\frac{3}{n_{H} \text { head. }}, \frac{5}{n_{T} \text { tails }}$

- i.e., $n_{H}+n_{T}=n$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
Goal: find θ that maximizes $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\Pi$

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=? ? ?$

While it is possible to compute this derivative, it's not always nice since we are working with products.

Log-Likelihood

We can save some work if we use the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\ln \prod_{i=1}^{n} P\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln P\left(x_{i} ; \theta\right)
$$

Useful log properties

$$
\begin{gathered}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln \left(a^{b}\right)=b \cdot \ln (a)
\end{gathered}
$$

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\begin{aligned}
& \text {-ide., } n_{H}+n_{T}=n \\
& \text { Goal: estimate } \theta=\text { prob. heads. } \\
& \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}} \\
& \ln \mathcal{R}=\ln \left(\theta^{n_{1}}\right)+\ln \left((1-\theta)^{n_{T}}\right) \\
& =n_{H} \ln \theta+n_{T} \ln (1-\theta) \\
& \text { LL: loglhethod. } \\
& L L\left(x_{1}, \ldots, x_{n} \mid \theta\right) \\
& \frac{d}{d x} \ln x=\frac{1}{x} \\
& \frac{d L L}{d \theta}=\frac{n_{H}}{\theta}+\frac{n_{T}}{1-\theta} \cdot(-1) \\
& =0
\end{aligned}
$$

Example - Coin Flips

Observe: Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails

$$
\text { - i.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \ln \theta+n_{T} \ln (1-\theta)$
$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \cdot \frac{1}{\theta}-n_{T} \cdot \frac{1}{1-\theta}$
Want value $\hat{\theta}$ of θ s.t. $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=0$
Solving gives
$\hat{\theta}=\frac{n_{H}}{n}$
So we need $n_{H} \cdot \frac{1}{\widehat{\theta}}-n_{T} \cdot \frac{1}{1-\widehat{\theta}}=0$

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous MLE

The Continuous Case

Given n (independent) samples x_{1}, \ldots, x_{n} from (continuous) parametric model $f\left(x_{i} ; \theta\right)$ which is now a family of densities

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\begin{array}{r}
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
\text { Replace pmf with pdf! }
\end{array}
$$

Why density?

- Density \neq probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model

$$
A(x \in[x, x+d x]) \approx f(x, d x
$$

Agenda

- MLE for Normal Distribution -
- Unbiased and Consistent Estimators
- Odds and ends
n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?
[i.e., we are given the promise that the variance is 1]

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

$$
N(\theta, 1) \quad f(x ; \theta)=\frac{1}{\sqrt{2 \pi}} e
$$

Example - Gaussian Parameters

$$
\begin{array}{r}
\ln (a b)=\ln (a)+\ln (b) \\
\ln (a / b)=\ln (a)-\ln (b) \\
\longrightarrow \ln \left(a^{b}\right)=b \cdot \ln (a)
\end{array}
$$

$$
0.290 .841 .58-0.3
$$

Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$
Goal: estimate θ, the expectation

$$
\begin{gathered}
\ln e^{y} \\
=y
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\theta\right)^{2}}{2}}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(x_{i}-\theta\right)^{2}}{2}} \\
& H=\operatorname{mon}
\end{aligned}
$$

$$
\begin{aligned}
& \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
\end{aligned}
$$

Example - Gaussian Parameters
Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

Note: $\frac{\partial}{\partial \theta} \frac{\left(x_{i}-\theta\right)^{2}}{2}=\frac{1}{2} \cdot 2 \cdot\left(x_{i}-\theta\right) \cdot(-1)=\theta-x_{i}$

$$
\frac{d L L}{d \theta}=\sum_{i=1}^{n}\left(x_{i}-\theta\right)
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}-n \theta=0 \\
& \hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Example - Gaussian Parameters

Goal: estimate $\theta=$ expectation
Normal outcomes x_{1}, \ldots, x_{n}, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

Note: $\frac{\partial}{\partial \theta} \frac{\left(x_{i}-\theta\right)^{2}}{2}=\frac{1}{2} \cdot 2 \cdot\left(x_{i}-\theta\right) \cdot(-1)=\theta-x_{i}$

$$
\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\sum_{i=1}^{n}\left(x_{i}-\theta\right)=\sum_{i=1}^{n} x_{i}-n \theta
$$

So... solve $\sum_{i=1}^{n} x_{i}-n \hat{\theta}=0$ for $\hat{\theta}$

$$
\hat{\theta}=\frac{\sum_{i}^{n} x_{i}}{n} \quad \begin{aligned}
& \text { In other words, MLE is the } \\
& \text { sample mean of the data. }
\end{aligned}
$$

Next: n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Most likely μ and σ^{2} ?

$$
\mathcal{L}=\prod_{i=1}^{n} f\left(x_{i} ; \theta_{1}, \theta_{2}\right)
$$

Two-parameter optimization

$\ln (a b)=\ln (a)+\ln (b)$ $\ln (a / b)=\ln (a)-\ln (b)$ $\ln \left(a^{b}\right)=b \cdot \ln (a)$

Normal outcomes x_{1}, \ldots, x_{n}
Goal: estimate $\theta_{1}=\mu=$ expectation and $\theta_{2}=\sigma^{2}=$ variance

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=\left(\frac{1}{\sqrt{2 \pi \theta_{2}}}\right)^{n} \prod_{i=1}^{n} e^{-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}}
$$

$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=$

$$
=-n \frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}
$$

Two-parameter estimation

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=-\frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}
$$

Find pair $\hat{\theta}_{1}, \hat{\theta}_{2}$ that maximizes $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)$

Two-parameter estimation

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=-\frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}
$$

We need to find a solution $\hat{\theta}_{1}, \hat{\theta}_{2}$ to

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{1}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=0 \\
& \frac{\partial}{\partial \theta_{2}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=0
\end{aligned}
$$

> MLE for Expectation $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=-n \frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}$ $\frac{\partial}{\partial \theta_{1}} \ln \mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \theta_{1}, \theta_{2}\right)=$

> MLE for Expectation $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=-n \frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}$ $\frac{\partial}{\partial \theta_{1}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=\frac{1}{\theta_{2}} \sum_{i}^{n}\left(x_{i}-\theta_{1}\right)=0$

$$
\hat{\theta}_{1}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

In other words, MLE of expectation is (again) the sample mean of the data, regardless of θ_{2}

What about the variance?

$$
x_{1} x_{2} \quad x_{n}
$$

MLE for Variance

$$
\begin{gathered}
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}_{1}, \theta_{2}\right)=-n \frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\hat{\theta}_{1}\right)^{2}}{2 \theta_{2}} \\
=-n \frac{\ln 2 \pi}{2}-n \frac{\ln \theta_{2}}{2}-\frac{1}{2 \theta_{2}} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2} \\
\frac{\partial}{\partial \theta_{2}} \ln \mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \hat{\theta}_{1}, \theta_{2}\right)=-\frac{n}{2 \theta_{2}}+\frac{1}{2 \theta_{2}^{2}} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}=0
\end{gathered}
$$

$$
\hat{\theta}_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}
$$

In other words, MLE of variance is the population variance of the data. (Note that this is not called sample variance!)

Likelihood - Continuous Case

Definition. The likelihood of independent observations x_{1}, \ldots, x_{n} is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)
$$

Normal outcomes x_{1}, \ldots, x_{n}

$$
\hat{\theta}_{\mu}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

MLE estimator for expectation

$$
\hat{\theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}
$$

MLE estimator for variance

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \vec{\theta}\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \vec{\theta}\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \vec{\theta}\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \vec{\theta}\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max. $\frac{\partial}{2}()=0$

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture

When is an estimator good?

$$
\hat{\hat{\theta}}=\frac{n_{t}}{5}
$$

Parameter estimate

Definition. An estimator of parameter θ is an unbiased estimator if

Note: This expectation is over the samples X_{1}, \ldots, X_{n}

Three samples from $U(0, \theta)$

Example - Coin Flips

Coin-flip outcomes x_{1}, \ldots, x_{n}, with n_{H} heads, n_{T} tails
Fact. $\hat{\theta}_{\mu}$ is unbiased
i.e., $\mathbb{E}\left[\hat{\theta}_{\mu}\right]=p$, where p is the probability that the coin turns out head.

Why?
Because $\mathbb{E}\left[n_{H}\right]=n p$ when p is the true probability of heads.

Consistent Estimators \& MLE

$\theta=\underline{u n k n o w n ~ p a r a m e t e r ~}$
Definition. An estimator is unbiased if $\mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$ for all $n \geq 1$.

Definition. An estimator is consistent if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\hat{\theta}_{n}\right]=\theta$.

Theorem. MLE estimators are consistent.
(But not necessarily unbiased)

Example - Consistency

Normal outcomes X_{1}, \ldots, X_{n} i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Population variance - Biased!
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

Example - Consistency

Normal outcomes X_{1}, \ldots, X_{n} i.i.d. according to $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Assume: $\sigma^{2}>0$

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Population variance - Biased!
Sample variance - Unbiased!
$\widehat{\Theta}_{\sigma^{2}}$ converges to same value as S_{n}^{2}, i.e., σ^{2}, as $n \rightarrow \infty$.
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

Why does it matter?

- When statisticians are estimating a variance from a sample, they usually divide by $n-1$ instead of n.
- They and we not only want good estimators (unbiased, consistent)
- They/we also want confidence bounds
- Upper bounds on the probability that these estimators are far the truth about the underlying distributions
- Confidence bounds are just like what we wanted for our polling problems, but CLT is usually not the best thing to use to get them (unless the variance is known)

Agenda

- MLE for Normal Distribution
- Unbiased and Consistent Estimators
- Intuition and Bigger Picture

Another approach to parameter estimation

Assume we have prior distribution over what values of θ are likely. In other words...
assume that we know $P(\theta)=$ probability θ is used, for every θ.
Maximum a-posteriori probability estimation (MAP)

$$
\begin{aligned}
\hat{\theta}_{\mathrm{MAP}} & =\operatorname{argmax}_{\theta} \frac{\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right) \cdot P(\theta)}{\sum_{\theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right) \cdot P(\theta)} \\
& =\operatorname{argmax}_{\theta} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right) \cdot P(\theta)
\end{aligned}
$$

Note when prior is constant, you get MLE!

MLE and MAP in AI and Machine Learning

- MLE and MAP can be defined over distributions that are not the nice well-defined families as we have been considering here
- e.g. $\vec{\theta}$ might be the vector of parameters in some Neural Net or unknown entries in some Bayes Net.
- A variety of optimization methods and heuristic methods are used to compute/approximate them.

General Recipe

1. Input Given n i.i.d. samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. Log Compute ln $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

