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Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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Probability vs Statistics

3

Probability
Given model, predict 

data 
Ber $ = 0.5 )(+,,+,,)

Statistics
Given data, predict 

model 
+,,+,,Ber $ =? ?



Recap Formalizing Polls
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We assume that poll answers !!, … , !" ~ Ber()) i.i.d. for unknown )

Goal: Estimate )

We did this by computing  )̂ = !
"∑#$!

" !#



Recap More generally …

In estimation we often …. 
• Assume: we know the type of the random variable that we 

are observing independent samples from
– We just don’t know the parameters, e.g.

• the bias $ of a random coin Bernoulli($)
• The arrival rate 4 for the Poisson(4) or Exponential(4)
• The mean < and variance = of a normal >(<, =)

• Goal: find the “best” parameters to fit the data
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Statistics: Parameter Estimation – Workflow
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Distribution
%('; ))

Independent 
samples 
!!, … , !"
from .(/; 1)

Estimation
Algorithm

21

Parameter 
estimate

! = unknown parameter

Example: coin flip distribution with unknown @ = probability of heads  

Observation:  ,++,,,+,+,++++,+,+++++,+

Goal: Estimate @

pmf



Example

Suppose we have a mystery coin with some probability $ of coming up heads. We 
flip the coin 8 times, independent of other flips, and see the following sequence of 
flips

++,+,++,

Given this data, what would you estimate $ is?
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Poll: www.slido.com/1692973
a. 1/2
b. 5/8
c. 3/8
d. 1/4

How can you argue 
“objectively” that this your 
estimate is the best estimate?



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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Likelihood

10

You tell me your best guess 
about the value of the unknown 
parameter @ (a.k.a. $) is 4/5. Is 
there some way that you can 
argue “objectively” that this is 
the best estimate?

Say we see outcome ,,+,,. 

likelihood

y
unthen param
Pr see this data ftp is o

6 to

What value y o maximizes

this fn

da 04 05 463 504
403 504 0

403 504 103
4 50

É I



Likelihood

11

ℒ 44544 | 1 = 1+(1 − 1)
Probability of observing the 
outcome ,,+,, if @ = prob. 
of heads. 

For a fixed outcome ,,+,, , 
this is a function of @. 

Say we see outcome ,,+,,. 
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Likelihood of Different Observations
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Definition. The likelihood of independent observations /!, … . , /" is

ℒ /!, … . , /" 1 =:
#$!

"
.(/#; 1)

(Discrete case)

Example:
Say we see outcome ,,+,,. 

ℒ 44544 | 1 = . 4; 1 ⋅ . 4; 1 ⋅ . 5; 1 ⋅ . 4; 1 ⋅ . 4; 1 = 1+(1 − 1)

P x Px x

P x o



Likelihood vs. Probability

• Fixed !: probability ∏!"#
$ #(%!; !) that dataset %#, … , %$ is 

sampled by distribution with parameter !
– A function of /!, … , /"

• Fixed %#, … , %$: likelihood ℒ %#, … , %$ !) that parameter !
explains dataset %#, … , %$.
– A function of 1

These notions are the same number if we fix both %#, … , %$
and !, but different role/interpretation 
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Likelihood of Different Observations

14

Definition. The likelihood of independent observations /!, … . , /" is

ℒ /!, … . , /" 1 =:
#$!

"
.(/#; 1)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data /!, … . , /", find 
21 such that  ℒ /!, … . , /" 21 is maximized!

21 = argmax
,

ℒ /!, … . , /" 1

P x o P Xx
whenparam is

o



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with +% heads, +& tails
– i.e., @- + @. = @

Goal: find 1 that maximizes ℒ /!, … . , /" 1
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Goal: estimate 1 = prob. heads. 

ℒ /!, … . , /" 1 = 1"! 1 − 1 ""

data I see

t
DD

o
IT



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with +% heads, +& tails
– i.e., @- + @. = @
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B
B1 ℒ /!, … . , /" 1 = ? ? ?

Goal: estimate 1 = prob. heads. 

While it is possible to compute this derivative, it’s not always 
nice since we are working with products.

ℒ /!, … . , /" 1 = 1"! 1 − 1 ""



Log-Likelihood
We can save some work if we use the log-likelihood instead of the likelihood 
directly.

Useful log properties
ln #$ = ln # + ln $
ln #/$ = ln # − ln($)

ln #! = $ ⋅ ln(#)
17

Definition. The log-likelihood of independent observations 
/!, … . , /" is

ln ℒ /!, … , /" 1) = ln:
#$!

"
.(/#; 1) = F

#$!

"
ln .(/#; 1)



Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with +% heads, +& tails
– i.e., @- + @. = @
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ℒ /!, … . , /" 1 = 1"! 1 − 1 ""

Goal: estimate 1 = prob. heads. 

ln %& = ln % + ln &
ln %/& = ln % − ln(&)

ln %! = & ⋅ ln(%)

D LL leghhelhad

lnL bn ont t en i o
t thing

flux It
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Example – Coin Flips

Observe: Coin-flip outcomes %#, … , %$, with +% heads, +& tails
– i.e., @- + @. = @
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ℒ /!, … . , /" 1 = 1"! 1 − 1 ""

Goal: estimate 1 = prob. heads. 

ln ℒ /!, … . , /" 1 = @- ln 1 + @. ln(1 − 1)
B
B1 ln ℒ /!, … . , /" 1 = @- ⋅

1
1 − @. ⋅

1
1 − 1

Want value 21 of 1 s.t. /
/, ln ℒ /!, … . , /" 1 = 0

So we need @- ⋅ !0, − @. ⋅
!

!10, = 0

Solving gives 
!" = !!

!L



General Recipe

1. Input Given ! i.i.d. samples "#, … , "$ from parametric model with 
parameter %.
2. Likelihood Define your likelihood ℒ "#, … . , "$ % .
– For discrete ℒ #", … . , ## ' = ∏$%"

# * #$ ; '
3. Log Compute ln ℒ "#, … . , "$ %
4. Differentiate Compute ''( ln ℒ "#, … . , "$ %
5. Solve for *% by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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Brain Break

21



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous MLE
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The Continuous Case

Given + (independent) samples %#, … , %$ from (continuous) 
parametric model , %!; ! which is now a family of densities
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Definition. The likelihood of independent observations /!, … . , /" is

ℒ /!, … . , /" 1 =:
#$!

"
H(/#; 1)

Replace pmf with pdf!

Exp O

FG o o e
ox

data

t

a



Why density?

• Density ≠ probability, but:
– For maximizing likelihood, we really only care about relative 

likelihoods, and density captures that
– has desired property that likelihood increases with better fit to the 

model

24
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Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Odds and ends
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0−1−2−3−4 1 2 3 4 5 6

I samples J!, … , J" ∈ ℝ from Gaussian >(<, 1). Most likely <?
[i.e., we are given the promise that the variance is 1]

It



27

0−1−2−3−4 1 2 3 4 5 6

I samples J!, … , J" ∈ ℝ from Gaussian >(<, 1). Most likely <?

I = 0?

Unlikely …
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0−1−2−3−4 1 2 3 4 5 6

I samples J!, … , J" ∈ ℝ from Gaussian >(<, 1). Most likely <?

I = 3?
Better, but 
optimal? 
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0−1−2−3−4 1 2 3 4 5 6

@ samples /!, … , /" ∈ ℝ from Gaussian M(I, 1). Most likely I?

x ok



Example – Gaussian Parameters

Normal outcomes %#, … , %$, known variance .) = 1

30

ℒ J!, … . , J" @ =O
#$!

" 1
2P Q

% &!%' "
( = 1

2P
"
O
#$!

"
Q%

&!%' "
(

Goal: estimate 1, the expectation

ln ℒ J!, … . , J" @ = − I ln 2P2 −R
#$!

" J# − @ (

2

ln %& = ln % + ln &
ln %/& = ln % − ln(&)

ln %! = & ⋅ ln(%)

NO 1 fix g e
t

58018411

D
me4

EI.FI
ItEeye oy
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Example – Gaussian Parameters

Normal outcomes /!, … , /", known variance N2 = 1

31

Goal: estimate 1= expectation

ln ℒ J!, … . , J" @ = − I ln 2P2 −R
#$!

" J# − @ (

2
Note: )

)'
&!%' "

( = !
( ⋅ 2 ⋅ J# − @ ⋅ −1 = @ − J#

É Xi no o

dat É xi o

In



Example – Gaussian Parameters

Normal outcomes /!, … , /", known variance N2 = 1

32

Goal: estimate 1= expectation

ln ℒ J!, … . , J" @ = − I ln 2P2 −R
#$!

" J# − @ (

2

B
B1 ln ℒ /!, … . , /" 1 =F

#$!

"
(/# − 1) =F

#$!

"
/# − @1

Note: )
)'

&!%' "

( = !
( ⋅ 2 ⋅ J# − @ ⋅ −1 = @ − J#

21 = ∑#" /#
@

In other words, MLE is the 
sample mean of the data.

So… solve  ∑#$!" /# − @ 21 = 0 for 21



0

0.1
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0−1−2−3−4 1 2 3 4 5 6

Next: + samples %#, … , %$ ∈ ℝ from Gaussian 3(4, .)). 
Most likely 4 and .)? 



Two-parameter optimization

34

Normal outcomes %#, … , %$
Goal: estimate 1! = µ = expectation and 12 = N2 = variance

ℒ /!, … . , /" 1!, 12 = 1
2Q12

"
:
#$!

"
R1

3.1,/ 0
2,0

ln ℒ /!, … . , /" 1!, 12 =

= −@ ln(2Q 12)2 −F
#$!

" /# − 1! 2

212

ln %& = ln % + ln &
ln %/& = ln % − ln(&)

ln %! = & ⋅ ln(%)

L IIF xi 9,02

data

p
IE F



Two-parameter estimation

ln ℒ /!, … . , /" 1!, 12 = − ln(2Q 12)2 −F
#$!

" /# − 1! 2

212

Find pair 21!, 212 that maximizes ln ℒ /!, … . , /" 1!, 12

35
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Two-parameter estimation

ln ℒ /!, … . , /" 1!, 12 = − ln(2Q 12)2 −F
#$!

" /# − 1! 2

212
We need to find a solution 21!, 212 to

B
B1!

ln ℒ /!, … . , /" 1!, 12 = 0
B
B12

ln ℒ /!, … . , /" 1!, 12 = 0

36



MLE for Expectation
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ln ℒ J!, … . , J" @!, @( = −I ln(2P @()2 −R
#$!

" J# − @! (

2@(
B
B1!

ln ℒ /!, … . , /" 1!, 12 =



MLE for Expectation

38

ln ℒ J!, … . , J" @!, @( = −I ln(2P @()2 −R
#$!

" J# − @! (

2@(

B
B1!

ln ℒ /!, … . , /" 1!, 12 = 1
12
F
#

"
(/# − 1!) = 0

21! =
∑#" /#
@

In other words, MLE of expectation is 
(again) the sample mean of the data, 
regardless of 12

What about the variance?



MLE for Variance

39

ln ℒ J!, … . , J" T@!, @( = −I ln(2P @()2 −R
#$!

" J# − T@!
(

2@(

B
B12

ln ℒ /!, … . , /" 21!, 12 =

214 =
1
@F#$!

"
/# − 21!

2 In other words, MLE of variance is the 
population variance of the data.
(Note that this is not called sample variance!)

− @
212

+ 1
2122

F
#$!

"
/# − 21!

2

= −I ln 2P2 − I ln @(2 − 1
2@(

R
#$!

"
J# − T@!

(

= 0

X X2 Xn

t



Likelihood – Continuous Case

40

Definition. The likelihood of independent observations /!, … . , /" is

ℒ /!, … . , /" 1 =:
#$!

"
H(/#|1)

Normal outcomes %#, … , %$

2151 =
1
@F
#$!

"
/# − 216

2216 =
∑#" /#
@

MLE estimator for 
expectation

MLE estimator for 
variance



General Recipe

1. Input Given , i.i.d. samples #", … , ## from parametric model with 
parameter '.
2. Likelihood Define your likelihood ℒ #", … . , ## ' .

– For discrete ℒ +2, … . , +3 / = ∏452
3 2 +4 ; /

– For continuous ℒ +2, … . , +3 / = ∏452
3 4 +4 ; /

3. Log Compute ln ℒ #", … . , ## '
4. Differentiate Compute &&' ln ℒ #", … . , ## '
5. Solve for /' by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.
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This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Sword-billed_hummingbird
https://creativecommons.org/licenses/by-sa/3.0/


Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Intuition and Bigger Picture
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When is an estimator good?

44

Definition. An estimator of parameter 1 is an unbiased estimator if

S 21" = 1.

Distribution
%('; ))

Independent 
samples 
!!, … , !"
from .(/; 1)

Estimation
Algorithm

21"

Parameter 
estimate

* = unknown parameter

Note: This expectation is over the samples U!, … , U"

p
Ht

a ht X.to
asEGEJI p

o

tmerabeypaam



Three samples from 5(0, !)
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Example – Coin Flips

Coin-flip outcomes %#, … , %$, with +% heads, +& tails

46

Recall: 216 = "!
"

Fact. 216 is unbiased

i.e., V T@+ = $, where $ is the probability that the coin turns out head. 

Why?

Because V I, = I$ when $ is the true probability of heads.

o



Consistent Estimators & MLE

47

Definition. An estimator is unbiased if S 21" = 1 for all @ ≥ 1.

Definition. An estimator is consistent if lim"→8S 21" = 1.

Theorem. MLE estimators are consistent. (But not necessarily 
unbiased)

Distribution
%('; ))

Independent 
samples 
!!, … , !"
from .(/; 1)

Estimation
Algorithm

21"

Parameter 
estimate

* = unknown parameter



Example – Consistency 
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Normal outcomes !!, … , !" i.i.d. according to M(I, N2)

VΘ90 =
1
@F#$!

"
!# − VΘ6

2

Assume: N2 > 0

Population variance – Biased!

VΘ90 is “consistent”



Example – Consistency 
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Normal outcomes !!, … , !" i.i.d. according to M(I, N2)

VΘ90 =
1
@F#$!

"
!# − VΘ6

2

Assume: N2 > 0

Y"2 =
1

@ − 1F#$!

"
!# − VΘ6

2

Sample variance – Unbiased!

VΘ90 converges to same value as Y"2, i.e., N2, as @ → ∞.

Population variance – Biased!

VΘ90 is “consistent”



Why does it matter?

• When statisticians are estimating a variance from a sample, they 
usually divide by @−1 instead of @. 

• They and we not only want good estimators (unbiased, consistent)
– They/we also want confidence bounds

• Upper bounds on the probability that these estimators are far the truth 
about the underlying distributions

– Confidence bounds are just like what we wanted for our polling problems, but 
CLT is usually not the  best thing to use to get them (unless the variance is 
known)
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Agenda

• MLE for Normal Distribution
• Unbiased and Consistent Estimators
• Intuition and Bigger Picture
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Another approach to parameter estimation

Assume we have prior distribution over what values of % are likely.
In other words…

assume that we know . 1 = probability 1 is used, for every 1.

Maximum a-posteriori probability estimation (MAP)

21:;< = argmax=
ℒ /!, … , /" 1) ⋅ .(1)

∑, ℒ /!, … , /" 1) ⋅ .(1)
= argmax= ℒ /!, … , /" 1) ⋅ .(1)

Note when prior is constant, you get MLE!
56



MLE and MAP in AI and Machine Learning

• MLE and MAP can be defined over distributions that are not 
the nice well-defined families as we have been considering 
here
– e.g. 1⃗ might be the vector of parameters in some Neural Net or 

unknown entries in some Bayes Net.

– A variety of optimization methods and heuristic methods are used 
to compute/approximate them.
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General Recipe

1. Input Given , i.i.d. samples #", … , ## from parametric model with 
parameter '.
2. Likelihood Define your likelihood ℒ #", … . , ## ' .

– For discrete ℒ +2, … . , +3 / = ∏452
3 2 +4 ; /

– For continuous ℒ +2, … . , +3 / = ∏452
3 4 +4 ; /

3. Log Compute ln ℒ #", … . , ## '
4. Differentiate Compute &&' ln ℒ #", … . , ## '
5. Solve for /' by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, 
but we won’t ask you to do that in CSE 312.
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