CSE 312 Foundations of Computing II

20: Counting Distinct Elements

www.slido.com/2226110

1

Data mining – Stream Model

- In many data mining situations, data often not known ahead of time.
 - Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
 - We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model – Problem Setup

Input: sequence (aka. "stream") of *N* elements $x_1, x_2, ..., x_N$ from a known universe *U* (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data ⇒ use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting <u>distinct</u> elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
 - Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
 - Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

- <u>Naïve solution</u>: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: *m* is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

How to do this <u>without</u> storing all the elements?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

Detour – I.I.D. Uniforms

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$ $\mathbb{E}[\min(Y_1)] =$ m = 1 $\mathbb{E}[\min(Y_1, Y_2)] =$ 1 0 m = 2х 1 0 $\mathbb{E}[\min(Y_1,\cdots,Y_4)] =$ m = 40 1

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$

What is some intuition for this?

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}[\min\{Y_1, \dots, Y_m\}]$?

CDF: Observe that $\min\{Y_1, \dots, Y_m\} \ge y$ if and only if $Y_1 \ge y, \dots, Y_m \ge y$

$$P(\min\{Y_1, \dots, Y_m\} \ge y) = P(Y_1 \ge y, \dots, Y_m \ge y)$$

$$y \in [0,1] = P(Y_1 \ge y) \cdots P(Y_m \ge y) \quad (\text{Independence})$$

$$= (1-y)^m$$

$$\Rightarrow P(\min\{Y_1, \dots, Y_m\} \le y) = 1 - (1-y)^m$$

Useful fact. For any random variable *Y* taking non-negative values

$$\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) \mathrm{d}y$$

Proof

$$\mathbb{E}[Y] = \int_0^\infty x \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \left(\int_0^x 1 \, \mathrm{d}y \right) \cdot f_Y(x) \, \mathrm{d}x = \int_0^\infty \int_0^x f_Y(x) \, \mathrm{d}y \, \mathrm{d}x$$
$$= \int_0^\infty \int_y^\infty f_Y(x) \, \mathrm{d}x \, \mathrm{d}y = \int_0^\infty P(Y \ge y) \, \mathrm{d}y$$

 $Y_1, \dots, Y_m \sim \text{Unif}(0, 1)$ (i.i.d.) Detour – Min of I.I.D. Uniforms $Y = \min\{Y_1, \cdots, Y_m\}$ **Useful fact.** For any random variable *Y* taking non-negative values $\mathbb{E}[Y] = \int_{0}^{\infty} P(Y \ge y) \mathrm{d}y$ $\mathbb{E}[Y] = \int_0^\infty P(Y \ge y) dy = \int_0^1 (1-y)^m dy$ $= -\frac{1}{m+1}(1-y)^{m+1} \bigg|_{0}^{1} = 0 - \left(-\frac{1}{m+1}\right) = \frac{1}{m+1}$

If $Y_1, \dots, Y_m \sim \text{Unif}(0,1)$ (iid) where do we expect the points to end up? In general, $\mathbb{E}[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$ $\mathbb{E}[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$ ^o $\mathbb{E}[\min(Y_1, Y_2)] = \frac{1}{2+1} = \frac{1}{2}$ m = 11 m = 2^o $\mathbb{E}[\min(Y_1, \dots, Y_4)] = \frac{1}{4+1} = \frac{1}{5}$ 1 m = 40 1

Back to counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream.

How to do this <u>without</u> storing all the elements?

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ **Assumption:** For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ Assumption: For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

4 distinct elements

→ 4 i.i.d. RVs $h(32), h(12), h(14), h(7) \sim \text{Unif}(0,1)$

$$\rightarrow \mathbb{E}[\min\{h(32), h(12), h(14), h(7)\}] = \frac{1}{5+1} = \frac{1}{6}$$

31

Distinct Elements – Hashing into [0, 1]

Hash function $h: U \rightarrow [0,1]$ **Assumption:** For all $x \in U$, $h(x) \sim \text{Unif}(0,1)$ and mutually independent

A super duper clever idea!!!!

$$\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}] = \frac{1}{m+1}$$

So $m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$

What if $\min\{h(x_1), \dots, h(x_N)\}$ is $\approx \mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]$?

The MinHash Algorithm – Idea

$$m = \frac{1}{\mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]} - 1$$

- 1. Compute val = $\min\{h(x_1), ..., h(x_N)\}$
- 2. Assume that val $\approx \mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]$
- 3. Output as estimate for m: relations of the set of

$$\operatorname{ound}\left(\frac{1}{\operatorname{val}}-1\right)$$

The MinHash Algorithm – Implementation

- 1. Compute val = min{ $h(x_1), \dots, h(x_N)$ }
- 2. Assume that val $\approx \mathbb{E}[\min\{h(x_1), \dots, h(x_N)\}]$

3. Output round
$$\left(\frac{1}{val} - 1\right)$$

Stream: 13, 25, 19, 25, 19, 19

MinHash Example

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

	Poll: www.slido.com/2226110
What does MinHash return?	a. 1
	b. 3
	c. 5
	d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23 Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is
$$\frac{1}{0.1} - 1 = 9$$
 Clearly, not a very good answer!

Not unlikely: P(h(x) < 0.1) = 0.1

The MinHash Algorithm – Problem

Algorithm MinHash $(x_1, x_2, ..., x_N)$ val $\leftarrow \infty$ for i = 1 to N do val \leftarrow min{val, $h(x_i)$ } return round $\left(\frac{1}{\text{val}} - 1\right)$ $val = \min\{h(x_1), \dots, h(x_N)\} \qquad \mathbb{E}[val] = \frac{1}{m+1}$

But val is not E[val]! How far is val from E[val]?

$$Var(val) \approx \frac{1}{(m+1)^2}$$

40

How can we reduce the variance?

Idea: Repetition to reduce variance! Use k independent hash functions $h^1, h^2, \dots h^k$

How can we reduce the variance?

Idea: Repetition to reduce variance! Use k independent hash functions $h^1, h^2, \dots h^k$

Algorithm MinHash $(x_1, x_2, ..., x_N)$

 $val_1, \dots, val_k \leftarrow \infty$ for i = 1 to N do $\operatorname{val}_1 \leftarrow \min\{\operatorname{val}_1, h^1(x_i)\}, \dots, \operatorname{val}_k \leftarrow \min\{\operatorname{val}_k, h^k(x_i)\}$ $\operatorname{val} \leftarrow \frac{1}{k} \sum_{i=1}^{k} \operatorname{val}_{i}$ return round $\left(\frac{1}{val} - 1\right)$

$$Var(val) = \frac{1}{k} \frac{1}{(m+1)^2}$$

MinHash and Estimating # of Distinct Elements in Practice

- MinHash in practice:
 - One also stores the element that has the minimum hash value for each of the k hash functions
 - Then, just given separate MinHashes for sets A and B, can also estimate — what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are