
CSE 312

Foundations of Computing II
20: Counting Distinct Elements

1

www.slido.com/2226110

Data mining – Stream Model

• In many data mining situations, data often not known ahead of time.
– Examples: Google queries, Twitter or Facebook status updates, YouTube video

views

• Think of the data as an infinite stream
• Input elements (e.g. Google queries) enter/arrive one at a time.

– We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream
using a limited amount of memory?

Stream Model – Problem Setup

Input: sequence (aka. “stream”) of 𝑁 elements 𝑥!, 𝑥", … , 𝑥#
from a known universe 𝑈 (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to
right pass, where:
– Elements processed in real time
– Can’t store the full data ⇒ use minimal amount of storage while

maintaining working “summary”

What can we compute?

Some functions are easy:
– Min
– Max
– Sum
– Average

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application

You are the content manager at YouTube, and you
are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!

Other applications

• IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)
– Anomaly detection, traffic monitoring

• Search: How many distinct search queries on Google on a certain
topic yesterday

• Web services: how many distinct users (cookies) searched/browsed a
certain term/item
– Advertising, marketing trends, etc.

Counting distinct elements

Want to compute number of distinct IDs in the stream.
• Naïve solution: As the data stream comes in, store all distinct IDs

in a hash table.
• Space requirement: Ω(𝑚)

YouTube Scenario: 𝑚 is huge!

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
𝑁 = # of IDs in the stream = 11, 𝑚 = # of distinct IDs in the stream = 5

Counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
𝑁 = # of IDs in the stream = 11, 𝑚 = # of distinct IDs in the stream = 5

0 1
x𝑚 = 1

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

Detour – I.I.D. Uniforms

Detour – I.I.D. Uniforms

19

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

𝑚 = 1
0 1

x

𝑚 = 2
0 1

x x

0 1

0 1
x

0 1
x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

“Evenly spread out”

Detour – I.I.D. Uniforms

Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4
𝔼[min 𝑌!, ⋯ , 𝑌#] =

𝔼[min 𝑌!] =

𝔼[min 𝑌!, 𝑌$] =

In general, 𝔼[min 𝑌!, ⋯ , 𝑌"] = !
"%!

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (iid) where do we expect the points to end up?

Detour – Min of I.I.D. Uniforms

In general, 𝔼[min 𝑌!, ⋯ , 𝑌"] = !
"%!

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (iid) where do we expect the points to end up?

What is some intuition for this?

Detour – Min of I.I.D. Uniforms

24

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (i.i.d.) where do we expect the points to end up?

e.g., what is 𝔼[min 𝑌!, ⋯ , 𝑌"]?

CDF: Observe that min 𝑌!, ⋯ , 𝑌" ≥ 𝑦 if and only if 𝑌! ≥ 𝑦,… , 𝑌" ≥ 𝑦

𝑃 min 𝑌!, ⋯ , 𝑌" ≥ 𝑦 = 𝑃(𝑌! ≥ 𝑦,… , 𝑌" ≥ 𝑦)

= 𝑃 𝑌! ≥ 𝑦 ⋯𝑃(𝑌" ≥ 𝑦) (Independence)

= 1 − 𝑦 "

𝑦 ∈ [0,1]

⇒ 𝑃 min 𝑌!, ⋯ , 𝑌" ≤ 𝑦 = 1 − 1 − 𝑦 "

25

Detour – Min of I.I.D. Uniforms

26

Useful fact. For any random variable 𝑌 taking
non-negative values

𝔼 𝑌 = 9
&

'
𝑃 𝑌 ≥ 𝑦 d𝑦

Proof

-
!"#"$"%

= .
!

%
.
#

%
𝑓& 𝑥 d𝑥 d𝑦 = .

!

%
𝑃 𝑌 ≥ 𝑦 d𝑦

𝔼 𝑌 = .
!

%
𝑥 ⋅ 𝑓& 𝑥 d𝑥 = .

!

%
.
!

$
1 d𝑦 ⋅ 𝑓& 𝑥 d𝑥 = .

!

%
.
!

$
𝑓& 𝑥 d𝑦 d𝑥

Detour – Min of I.I.D. Uniforms

27

𝑌', ⋯ , 𝑌(~ Unif 0,1 (i.i.d.)

𝑌 = min 𝑌', ⋯ , 𝑌(

Useful fact. For any random variable 𝑌 taking
non-negative values

𝔼 𝑌 = 9
&

'
𝑃 𝑌 ≥ 𝑦 d𝑦

𝔼 𝑌 = -
$

%
𝑃 𝑌 ≥ 𝑦 d𝑦 = -

$

!
1 − 𝑦 &d𝑦

= 4−
1

𝑚 + 1
1 − 𝑦 &'!

$

!

= 0 − −
1

𝑚 + 1
=

1
𝑚 + 1

Detour – Min of I.I.D. Uniforms

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

𝔼[min 𝑌!, ⋯ , 𝑌#] =
!

#%!
= !

(

𝔼[min 𝑌!] =
!

!%!
= !

$

𝔼[min 𝑌!, 𝑌$] =
!

$%!
= !

)

In general, 𝔼[min 𝑌!, ⋯ , 𝑌"] = !
"%!

If 𝑌!, ⋯ , 𝑌"~ Unif 0,1 (iid) where do we expect the points to end up?

Back to counting distinct elements

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
𝑁 = # of IDs in the stream = 11, 𝑚 = # of distinct IDs in the stream = 5

Distinct Elements – Hashing into [𝟎, 𝟏]

30

Hash function ℎ: 𝑈 → [0,1]
Assumption: For all 𝑥 ∈ 𝑈, ℎ 𝑥 ~ Unif 0,1 and mutually independent

32, 12, 14, 32, 7, 12, 32, 7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

Distinct Elements – Hashing into [𝟎, 𝟏]

31

Hash function ℎ: 𝑈 → [0,1]
Assumption: For all 𝑥 ∈ 𝑈, ℎ 𝑥 ~ Unif 0,1 and mutually independent

32, 12, 14, 32, 7, 12, 32, 7

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

4 distinct elements
→ 4 i.i.d. RVs ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 ~ Unif 0,1

→ 𝔼 min ℎ 32 , ℎ 12 , ℎ(14), ℎ 7 = !
(%!

= !
*

Distinct Elements – Hashing into [𝟎, 𝟏]

34

𝑥!, 𝑥", … , 𝑥# contains 𝑚 distinct elements

𝔼 min ℎ(𝑥!), … , ℎ(𝑥+) =
1

𝑚 + 1

Hash function ℎ: 𝑈 → [0,1]
Assumption: For all 𝑥 ∈ 𝑈, ℎ 𝑥 ~ Unif 0,1 and mutually independent

ℎ(𝑥!), ℎ 𝑥" , … , ℎ(𝑥#) contains 𝑚 i.i.d. rvs ~ Unif 0,1
and 𝑁 −𝑚 repeats

A super duper clever idea!!!!

35

So 𝑚 = !
𝔼 -./ 0(2!),…,0(2")

− 1

𝔼 min ℎ(𝑥!), … , ℎ(𝑥+) =
1

𝑚 + 1

What if min ℎ(𝑥!), … , ℎ(𝑥#) is ≈ 𝔼 min ℎ(𝑥!), … , ℎ(𝑥#) ?

The MinHash Algorithm – Idea

1. Compute val = min{ℎ(𝑥!), … , ℎ(𝑥#)}
2. Assume that val ≈ 𝔼 min ℎ(𝑥!), … , ℎ(𝑥#)

3. Output as estimate for 𝑚: round !
()*
− 1

36

𝑚 =
1

𝔼 min ℎ(𝑥!), … , ℎ(𝑥+)
− 1

The MinHash Algorithm – Implementation

37

Memory cost = just remember val
(with sufficient precision)

Algorithm MinHash(𝑥!, 𝑥", … , 𝑥#)
val ← ∞
for 𝑖 = 1 to 𝑁 do

val ← min{val, ℎ(𝑥+)}

return round !
()*
− 1

MinHash Example

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Poll: www.slido.com/2226110
a. 1
b. 3
c. 5
d. No idea

What does
MinHash return?

1. Compute val = min{ℎ(𝑥!), … , ℎ(𝑥")}
2. Assume that val ≈ 𝔼 min ℎ(𝑥!), … , ℎ(𝑥")

3. Output round !
#$%
− 1

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is !
$.!
− 1 = 9 Clearly, not a very good answer!

Not unlikely: 𝑃 ℎ 𝑥 < 0.1 = 0.1

The MinHash Algorithm – Problem

40

Algorithm MinHash(𝑥!, 𝑥", … , 𝑥#)
val ← ∞
for 𝑖 = 1 to 𝑁 do

val ← min{val, ℎ(𝑥+)}

return round !
()*
− 1

val = min{ℎ(𝑥!), … , ℎ(𝑥")}

But val is not 𝔼[val]!
How far is val from 𝔼[val]?

𝔼[val] =
1

𝑚 + 1

Var(val) ≈
1

𝑚 + 1 $

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use 𝑘 independent hash functions ℎ!, ℎ$, ⋯ ℎF

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use 𝑘 independent hash functions ℎ!, ℎ$, ⋯ ℎF

Algorithm MinHash(𝑥!, 𝑥$, … , 𝑥+)

val!, … , valG ← ∞
for 𝑖 = 1 to 𝑁 do

val! ← min{val!, ℎ!(𝑥H)} , … , valG ← min{valF , ℎF(𝑥H)}

val ←
1
𝑘
V
HI!

F

val.

return round !
JKL
− 1

Var val =
1
𝑘

1
𝑚 + 1 "

MinHash and Estimating # of Distinct Elements in Practice

• MinHash in practice:
– One also stores the element that has the minimum hash value for

each of the 𝑘 hash functions
• Then, just given separate MinHashes for sets 𝐴 and 𝐵, can also estimate

–what fraction of 𝐴 ∪ 𝐵 is in 𝐴 ∩ 𝐵; i.e., how similar 𝐴 and 𝐵 are

43

