CSE 312
Foundations of Computing Il

20: Counting Distinct Elements

1N ogf\d ho ¢S
’Hd\au-) o~ IPM

www.slido.com/2226110 §V\ (SN

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
- expectation of X given event 4 is

* Linearity of expectation still applies here
ElaX + bY + c| Al =aE[X |A]+ b E[Y |A] + ¢

16

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
and let events A4, ..., A,, partition the sample space. Then,

E[X] =) E[X|4;]-P(4)
i=1

Law of Total Expectation (random variable version). Let X be a
- random variable and Y be a discrete random variable. Then,

E[X]=) EIX|Y =yl P(Y =)
y €EQy

Law of total probability for continuous random variables.

o -
P(R)= Z?(I\\\)) P0V=4)

éThen

24

Data mining — Stream Model

* In many data mining situations, data often not known ahead of time.

— Examples: Google queries, Twitter or Facebook status updates, YouTube video
views

* Think of the data as an infinite stream

* Input elements (e.g. Google queries) enter/arrive one at a time.
— We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream
using a limited amount of memory?

m L RaRy ¥y B

—

Stream Model - Problem Setup

Input: sequence (aka. “stream”) of N elements x4, x5, ..., Xy
from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to
right pass, where:
— Elements processed in real time

— Can’t store the full data = use minimal amount of storage while
maintaining working “summary”’

What can we compute?

32’ 12’ 14’ 32) 7, 127 32’ 7’ 32’ 127

Some functions are easy:
f— Min
— Max
— Sum

— Average

)(\“ XN 3
‘

Today: Counting distinct elements

32, 12, 14, 32, /7, 12, 32, /, 32, 12,
Application
You are the content manager at YouTube, and you

are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!

Other applications

* |IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)

— Anomaly detection, traffic monitoring

* Search: How many distinct search queries on Google on a certain
topic yesterday

* Web services: how many distinct users (cookies) searched/browsed a

certain term/item
— Advertising, marketing trends, etc.

Counting distinct elements

32’ 12’ 14’ 32) 7, 12? 32’ 7’ 32’ 127

N = # of IDs in the stream =11, m = # of distinct IDs in the stream =5
\

Want to compute number of distinct IDs in the stream.

* Naive solution: As the data stream comes in, store all distinct IDs
in a hash table.

* Space requirement: Q(m)

YouTube Scenario: m is huge!

Counting distinct elements

327 12’ 14’ 32’ 7, 12? 32’ 7’ 32’ 12’

N = #of IDs in the stream =11, m = # of distinct IDs in the stream =5

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

\/ \/
N
Detour - L.D. Uniforms k['m . ‘”}3

1f Yy, -, Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?

E(\(\;%‘\

Detour - L.I.D. Uniforms

1f Yy, -, Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?

m=1 X

Detour - L.I.D. Uniforms

1f Yy, -, Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?

“Evenly spread out”

m=1 X

o) 1
m=2 X X

(0) 1
m=4 X X X

(1 90)= 5

Detour — Min of L.I.D. Uniforms
1f Yy, -, Y,,~ Unif(0,1) (iid) where do we expect the points to end up?

In general, E[min(Y3, -, Y,)] = _mi-l

m=1 X 1
! — \
E[mln(yli YZ)] - QJ" / ’3
m=2 X X
1
E[min(Y;,,Y,)] = 15= C
m =4 X X X X

Detour — Min of L.I.D. Uniforms
1f Yy, -, Y,,~ Unif(0,1) (iid) where do we expect the points to end up?

In general, E[min(Yy, -, Y,)] = _mi-l

What is some intuition for this?
= onicud

o yendeal o
wae p1
s O\KL\‘HM\ g

Detour — Min of L.I.D. Uniforms

1f Yy, -, Y,,~ Unif(0,1) (i.i.d.) where do we expect the points to end up?
e.g., what is E[min{Y3, -:-, Y, }]?

CDF: Observe thatmin{Yy, -, ¥.,} = yifandonlyif¥; =y,Y,, = y

y €[0,1] =PY,=2y) P, =y) (Independence)

=@=y"
(\ ,& :P(min{Yb'"JYm}Sy)z1_(1_y)m 24
R

Y=Y =) = (9

Detour — Min of L.I.D. Uniforms

~ Useful fact. For any random variable Y taking
- non-negative values

X

eIk
0

rooP(Y >y)dy
0

Y, Yo~ Unif(0,1) (i.i.d.)
Y = min{yl) Y Ym}

Detour — Min of L.I.D. Uniforms

Useful fact. For any random variable Y taking
~ non-negative values

E[Y] =f P(Y = y)dy =f (1—y)"dy
0 0

! 1 1
S
m-+1 m-+1

(1 - y)m+1

m+1

Detour — Min of L.I.D. Uniforms
1f Yy, -, Y,,~ Unif(0,1) (iid) where do we expect the points to end up?

In general, E[min(Yy, -, Y,)] = ——

m+1
E[min(Y;)] = :11 = ;
m=1 %
°E[min(Y;, Y,)] = 2—11 - § 1
m=2 X %
°E[min(Yy, -,)] = — =< 1
m =4 X X X X

Back to counting distinct elements

32’ 12’ 14’ 32’ 7, 12? 32’ 7’ 32’ 127

N = #of IDs in the stream =11, m = # of distinct IDs in the stream =5

Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Distinct Elements - Hashing into [0, 1]

__

‘Hash function h: U - [0,1] E
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

32’ 12’ 14) 32) 7) 127 32) 7
A A T T
h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

0P 0. H\ 0.\S Q.39 a2 OH

30

Distinct Elements - Hashing into [0, 1]

__

‘Hash function h: U - [0,1] |
Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent

2, 12, 14, 32, 7, 12,

P irTivrvi

h(32), h(12), h(14), h(32), h(7), h(12), h(32), h(7)

4 distinct elements

— 41iid.RVs h(32),h(12), h(14), h(7) ~ Unif(0,1)
1

— E[min{h(32), h(12), h(14), h(7)}] =qi—1 -5 .

(

—

i\

Distinct Elements - Hashing into [0, 1]

__

Hash function h: U — [0,1] e
‘Assumption: For all x € U, h(x) ~ Unif(0,1) and mutually independent '

X1,%X5, ..., Xy contains m distinct elements

!

h(x,),h(x,), ..., h(xy) contains m i.i.d. rvs ~ Unif(0,1)
l and N — m repeats

E[min{h(x;), ..., h(xy)}] = m+ 1
34

A super duper clever idea!!!!

E[min{h(xq), ..., h(xy)}] = 11

1
S0 M = E[min{h(x1),...h(xn)}] -1

What if min{h(x,), ..., h(xy)}is = E[min{h(x,), ..., h(xy)}] ? 5

1
The MinHash Algorithm - Idea m :@xﬂ, ___’h(xN)D— 1

1. Computeval = min{h(x;), ..., h(xy)} V/IQ
2. Assume thatwal = E[min{h(x;), ..., h(xy)}]

3. Output as estimate form: round (—1 — 1)

val

I a0 ~N
’ (.

36

The MinHash Algorithm - Implementation

Algorithm MinHash(xq, X5, ..., Xy)

| val « oo \
fori = 1to N do Memory cost = just remember val

: / (with sufficient precision)
val)< min{val, h(x;)}

return Wd (ﬁ @ Vel = W\\Y\Qr\("‘)“) \'\(7\)>>

hete &

37

1 Compute val = min{h(x,), ..., h(xy)}
2. Assume thatval = E[min{h(x;), ..., h(xy)}]

MinHash Example
p 3. OutputFmd (Vial— 17‘)

Stream: 13, 25, 19, 25, 19, 19 vel=0.26

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79 fowrd Jaa—a—\)

What does E !
MinHash return? c 5
d

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, O.1

Output s O—Z —1=9 Clearly, not a very good answer!
\ Not unlikely: P(h(x) < 0.1) = 0.1
AN
Vg
\&‘)\ F |‘ \
e \ M\ ‘

SN S

The MinHash Algorithm - Problem

Algorithm MinHash(xq, X5, ..., Xy)
val « oo

fori =1toNdo But val is not E[val]!

val « min{val, h(x;)} How far is val from E[val]?

1
- Var(val) =

(m + 1)2

val = min{h(x;), ..., h(xy)} E[val] = mi— 1

40

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions h', h?, -+ h*

—

LTA»W (4= W) =m0y %)
oJL

= N (‘K\ - \,\}(KN\— \r\(\/“\ Y...)

7\}‘;\ -— AR
Y %\;a)f ﬂ %L
\IN\(\@): ‘\L& w\(— -L; i - \\w\)

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions h', h?, -+ h*

Algorithm MinHash(xq, x5, ..., Xy)

valy, ..., valy « o
fori = 1to N do

1

return round (— — 1)

g E/gw:m\if\/

MinHash and Estimating # of Distinct Elements in Practice

* MinHash in practice:
— One also stores the element that has the minimum hash value for
each of the k hash functions
* Then, just given separate MinHashes for sets A and B, can also estimate
—what fraction of AU Bisin A N B;i.e., how similar A and B are

43

