CSE 312

Foundations of Computing II

20: Counting Distinct Elements
www.slido.com/2226110

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event A is

$$
\mathbb{E}[X \mid A]=\sum_{x \in \Omega_{X}} x \cdot P(X=x \mid A)
$$

Note:

- Linearity of expectation still applies here

$$
\mathbb{E}[a X+b Y+c \mid A]=a \mathbb{E}[X \mid A]+b \mathbb{E}[Y \mid A]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid A_{i}\right] \cdot P\left(A_{i}\right)
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
\mathbb{E}[X]=\sum_{y \in \Omega_{Y}} \mathbb{E}[X \mid Y=y] \cdot P(Y=y)
$$

$$
A_{i} \text { s }=\{y=y\}
$$

Law of total probability for continuous random variables. P diswete $P(A)=\sum_{y \in \Omega_{y}} P(A \mid Y=y) P(Y=y)$

Definition. Let A be an event and Y a continuous random variable. Then

$$
P[A]=\int_{-\infty}^{\infty} P(A \mid Y=y) f_{Y}(y) \mathrm{d} y
$$

Data mining - Stream Model

- In many data mining situations, data often not known ahead of time.
- Examples: Google queries, Twitter or Facebook status updates, YouTube video views
- Think of the data as an infinite stream
- Input elements (e.g. Google queries) enter/arrive one at a time.
- We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Stream Model - Problem Setup

Input: sequence (aka. "stream") of N elements $x_{1}, x_{2}, \ldots, x_{N}$ from a known universe U (e.g., 8-byte integers).

Goal: perform a computation on the input, in a single left to right pass, where:

- Elements processed in real time
- Can't store the full data \Rightarrow use minimal amount of storage while maintaining working "summary"

What can we compute?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Some functions are easy:

- Min
- Max
- Sum
- Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application
You are the content manager at YouTube, and you are trying to figure out the distinct view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 distinct view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
- Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
- Advertising, marketing trends, etc.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=\#$ of IDs in the stream $=11, \quad m=$ \# of distinct IDs in the stream $=5$
Want to compute number of distinct IDs in the stream.

- Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement: $\Omega(m)$

YouTube Scenario: m is huge!

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=\#$ of IDs in the stream $=11, \quad m=\#$ of distinct IDs in the stream $=5$
Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Detour - I.I.D. Uniforms

$$
E\left[\min \left(y_{1}, y_{0}, y_{n}\right)\right]
$$

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

$$
E(y)=\frac{0}{\frac{1}{2}}
$$

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

$$
m=2
$$

$$
E\left(m r\left(y, y_{2}\right)\right)=\frac{1}{3}
$$

Detour - I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up?

$$
m=1
$$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up?
In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$

$$
\begin{aligned}
& m=1 \\
& m=2 \\
& m=4
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms
If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (id) where do we expect the points to end up?
In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$
What is some intuition for this?

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (i.i.d.) where do we expect the points to end up? e.g., what is $\mathbb{E}\left[\min \left\{Y_{1}, \cdots, Y_{m}\right\}\right]$?

CDF: Observe that $\min \left\{Y_{1}, \cdots, Y_{m}\right\} \geq y$ if and only if $Y_{1} \geq y, \ldots, Y_{m} \geq y$

$$
\begin{aligned}
& F_{y}(y)=P(Y \leq y)=1-(1-y)^{m} \\
& f_{y}(y)=\frac{d}{d y} F_{Y}(y)=m(1-y)^{m-1} \\
& E(Y)=\int_{0}^{1} y F_{y}(y) d y
\end{aligned}=\int_{0}^{1} y m(1-y)^{m-1} d y .
$$

Detour - Min of I.I.D. Uniforms

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

Proof

$$
\begin{array}{r}
\mathbb{E}[Y]=\int_{0}^{\infty} x \cdot f_{Y}(x) \mathrm{d} x=\int_{0}^{\infty}\left(\int_{0}^{x} 1 \mathrm{~d} y\right) \cdot f_{Y}(x) \mathrm{d} x=\int_{0}^{\infty} \int_{0}^{x} f_{Y}(x) \mathrm{d} y \mathrm{~d} x \\
=\int_{0}^{\infty} \int_{y}^{\infty} f_{Y}(x) \mathrm{d} x \mathrm{~d} y=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
\end{array}
$$

Detour - Min of I.I.D. Uniforms

$$
\begin{aligned}
& Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1) \text { (i.i.d.) } \\
& Y=\min \left\{Y_{1}, \cdots, Y_{m}\right\}
\end{aligned}
$$

Useful fact. For any random variable Y taking non-negative values

$$
\mathbb{E}[Y]=\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y
$$

$$
\begin{aligned}
\mathbb{E}[Y] & =\int_{0}^{\infty} P(Y \geq y) \mathrm{d} y=\int_{0}^{1}(1-y)^{m} \mathrm{~d} y \\
& =-\left.\frac{1}{m+1}(1-y)^{m+1}\right|_{0} ^{1}=0-\left(-\frac{1}{m+1}\right)=\frac{1}{m+1}
\end{aligned}
$$

Detour - Min of I.I.D. Uniforms

If $Y_{1}, \cdots, Y_{m} \sim \operatorname{Unif}(0,1)$ (iid) where do we expect the points to end up?
In general, $\mathbb{E}\left[\min \left(Y_{1}, \cdots, Y_{m}\right)\right]=\frac{1}{m+1}$

Back to counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$N=$ \# of IDs in the stream = 11, $\quad m=$ \# of distinct IDs in the stream $=5$
Want to compute number of distinct IDs in the stream.

How to do this without storing all the elements?

Distinct Elements - Hashing into [0, 1]
Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$$
\begin{array}{cccccccc}
32, & 12, & 14, & 32, & 7, & 12, & 32, & 7 \\
\square & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \\
\mathrm{~h}(32), & \mathrm{h}(12), & \mathrm{h}(14), & \mathrm{h}(32), & \mathrm{h}(7), \mathrm{h}(12), \mathrm{h}(32), \mathrm{h}(7) \\
0.38 & 0.71 & 0.15 & 0.38 & 0.25 & 0.71 &
\end{array}
$$

Distinct Elements - Hashing into [0, 1]
Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

4 distinct elements

$$
\begin{aligned}
& \rightarrow 4 \text { i.i.d. RVs } \quad h(32), h(12), h(14), h(7) \sim \operatorname{Unif}(0,1) \\
& \rightarrow \mathbb{E}[\min \{h(32), h(12), h(14), h(7)\}]=\frac{1}{4+1}=\frac{1}{5}
\end{aligned}
$$

Distinct Elements - Hashing into [0, 1]

Hash function $h: U \rightarrow[0,1]$
Assumption: For all $x \in U, h(x) \sim \operatorname{Unif}(0,1)$ and mutually independent

$x_{1}, x_{2}, \ldots, x_{N}$ contains m distinct elements

\downarrow

$$
h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{N}\right) \text { contains } m \text { i.i.d. rvs } \sim \operatorname{Unif}(0,1)
$$

$$
\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]=\frac{1}{m+1}
$$

A super duper clever idea!!!!

$$
\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]=\frac{1}{m+1}
$$

$$
\text { So } m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]}-1
$$

What if $\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$ is $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$?

The MinHash Algorithm - Idea

$$
m=\frac{1}{\mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right\rfloor}-1
$$

1. Compute val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$
2. Assume that val $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$
3. Output as estimate for m : round $\left(\frac{1}{\mathrm{val}}-1\right)$

The MinHash Algorithm - Implementation

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
val $\leftarrow \infty$
for $i=1$ to N do Memory cost = just remember val
val (with sufficient precision)
return $\underbrace{\text { round }\left(\frac{1}{\text { val }}-1\right)}_{\text {estrinete for } m} \quad \operatorname{Val}=\min \left(h\left(x_{1}\right) \ldots, h\left(x_{N}\right)\right)$

MinHash Example

1. Compute val $=\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}$
2. Assume that val $\approx \mathbb{E}\left[\min \left\{h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right\}\right]$
3. Output ound $\left(\frac{1}{\text { val }}-1\right)$

Stream: 13, 25, 19, 25, 19, $19 \quad \mathrm{Val}=0.26$
Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79 round $\left(\frac{1}{0.26}-1\right)$

Poll: www.slido.com/2226110
What does
MinHash return?
a. 1
b. 3
c. 5
d. No idea

MinHash Example II

Stream: 11, 34, 89, 11, 89, 23
Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

Output is $\frac{1}{0.1}-1=9 \quad$ Clearly, not a very good answer!
Not unlikely: $P(h(x)<0.1)=0.1$

The MinHash Algorithm - Problem

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$$
\mathrm{val} \leftarrow \infty
$$

$$
\text { for } i=1 \text { to } N \text { do }
$$

But val is not $\mathbb{E}[$ val]!

$$
\mathrm{val} \leftarrow \min \left\{\operatorname{val}, h\left(x_{i}\right)\right\}
$$

How far is val from $\mathbb{E}[$ val $]$?

$$
\text { return round }\left(\frac{1}{\mathrm{val}}-1\right)
$$

$$
\operatorname{Var}(\operatorname{val}) \approx \frac{1}{(m+1)^{2}}
$$

How can we reduce the variance?

Idea: Repetition to reduce variance! Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$

$$
\begin{aligned}
& \int \mathrm{Val}^{\prime}=\min \left(h^{\prime}(x), \ldots, h^{\prime}\left(x_{N}\right)\right)=\operatorname{mm}\left(y_{1}^{\prime}, \ldots y_{m}^{\prime}\right) \\
& \mathrm{val}^{2}=m m\left(h^{2}\left(x_{1}\right) \ldots \quad h^{2}\left(x_{N}\right)=m \cdot\left(Y_{1}^{2}, \ldots Y_{m}^{2}\right)\right. \\
& \operatorname{val}^{k}= \\
& \text { val }=\frac{1}{-k} \sum_{i=1}^{k} \text { val } \\
& E(\widetilde{\text { val }})=\frac{1}{k} \sum_{i=1}^{k} \frac{E\left(\text { val }^{i}\right)_{s}}{\frac{1}{m+1}}=\frac{1}{m+1} \\
& \operatorname{Van}(\sqrt[v a l]{\operatorname{val}})=\frac{1}{k^{2}} \operatorname{Var}\left(\sum_{i=1}^{k} \mathrm{val}^{i}\right)=\frac{1}{k^{2}} \cdot \sum_{i=1}^{k} \frac{1}{(m+1)^{2}}
\end{aligned}
$$

$$
=\frac{1}{k^{2}} \frac{k}{(m+1)^{2}}=\frac{1}{k(m+1)^{2}}
$$

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions $h^{1}, h^{2}, \cdots h^{k}$

Algorithm MinHash $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
$\mathrm{val}_{1}, \ldots, \mathrm{val}_{\mathrm{k}} \leftarrow \infty$
for $j=1$ to k
for $i=1$ to N do

$$
\begin{aligned}
& j=1 \text { to } k \\
& \operatorname{val}_{j} \leftarrow \min \left(\text { val ; }^{\prime} h^{j}\left(x_{i}\right)\right)
\end{aligned}
$$

val $\leftarrow \frac{1}{k} \sum_{i=1}^{k} \mathrm{val}_{\mathrm{i}}$
return round $\left(\frac{1}{\text { val }}-1\right)$

$$
\operatorname{Var}(\operatorname{val})=\frac{1}{k} \frac{1}{(m+1)^{2}}
$$

$$
m=\frac{1}{E(\text { mintash })}-1
$$

MinHash and Estimating \# of Distinct Elements in Practice

- MinHash in practice:
- One also stores the element that has the minimum hash value for each of the k hash functions
- Then, just given separate MinHashes for sets A and B, can also estimate
- what fraction of $A \cup B$ is in $A \cap B$; i.e., how similar A and B are

