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Agenda

• Polling
• Odds and ends including Law of total expectation
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Formalizing Polls
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Polling Procedure
for 𝑖 = 1, … , 𝑛 :

1. Pick uniformly random person to call (prob: 1/𝑁)
2. Ask them how they will vote

𝑋! = *1, voting in favor
0, otherwise

Report our estimate of 𝑝: ;𝑋 = "
#
∑!$"# 𝑋!

Population size 𝑁, true fraction of voting in favor 𝑝, sample size 𝑛.
Problem: We don’t know 𝑝, want to estimate it



Roadmap: Bounding Error

4

Question: for what 𝑛 is  𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02

10 𝑝 𝑝 + 0.05𝑝 − 0.05𝑋

Crucial observation: the more samples we take, the more 
likely 𝑋 is to be close to its expectation 𝑝 since as 𝑛 → ∞,     

By Central Limit Theorem 𝑋 = !
"
∑#$!
" 𝑋# → 𝒩 𝑝, %(!'%)

"



𝑃 𝑋 − 𝑝 > 0.05

= 𝑃( 𝑍 > 0.05
𝑛

𝑝 1 − 𝑝
)

Question: for what 𝑛 is  𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02

By Central Limit Theorem 𝑋 = !
"
∑#$!
" 𝑋# → 𝒩 𝑝, %(!'%)

"
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𝑃 𝑋 − 𝑝 > 0.05

= 𝑃( 𝑍 > 0.05
𝑛

𝑝 1 − 𝑝
)

so 0.05 #
% "&%

≥ 2 ⋅ 0.05 𝑛 = 0.1 𝑛

Question: for what 𝑛 is  𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02

𝟏
𝒑 𝟏'𝒑

is always ≥ 𝟐

By Central Limit Theorem 𝑋 = !
"
∑#$!" 𝑋# → 𝒩 𝑝, %(!'%)

"



8

𝑃 𝑋 − 𝑝 > 0.05

= 𝑃( 𝑍 > 0.05
𝑛

𝑝 1 − 𝑝
)

So 𝑃( 𝑍 > 0.05
𝑛

𝑝 1 − 𝑝
) ≤ 𝑃( 𝑍 > 0.1 𝑛)

so 0.05 #
% "&%

≥ 2 ⋅ 0.05 𝑛 = 0.1 𝑛

Question: for what 𝑛 is  𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02

Want to choose 𝑛 so that this is at most 0.02

By Central Limit Theorem 𝑋 = !
"
∑#$!" 𝑋# → 𝒩 𝑝, %(!'%)"



Solve for 𝑛 such that 𝑃 𝑍 > 0.1 𝑛 ≤ 0.02 where  𝑍 → 𝒩 0, 1

• This assumes 𝑛 is large enough that 𝑍 ∼ 𝒩 0, 1
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We want 𝑃 𝑍 > 0.1 𝑛 ≤ 0.02 where  𝑍 → 𝒩 0, 1

• Assuming 𝑍 ∼ 𝒩 0, 1 enough to show that                     
𝑃 𝑍 > 0.1 𝑛 ≤ 0.01 since 𝒩 0, 1 is symmetric about 0

Or equivalently, choose 𝑛 such that 

𝑃 𝑍 ≤ 0.1 𝑛 ≥ 0.99
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Table of 𝚽(𝐳) CDF of 
Standard Normal 
Distribution
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Choose 𝑛 so 
𝑃 𝑍 ≤ 0.1 𝑛 ≥ 0.99.
i.e.,
Φ 0.1 𝑛 ≥ 0.99

From table 𝑧 = 2.33 works



From table 𝑧 = 2.33 works

• So we can choose 0.1 𝑛 ≥ 2.33
or  𝑛 ≥ 23.3

• Then 𝑛 ≥ 543 ≥ 23.3 . would be 
good enough … if we had 𝑍 ∼ 𝒩 0, 1

• Since we only have 𝑍 → 𝒩 0, 1 there 
is some loss due to approximation error 
(which can be dealt with).
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Choose 𝑛 so 
𝑃 𝑍 ≤ 0.1 𝑛 ≥ 0.99.
i.e.,
Φ 0.1 𝑛 ≥ 0.99

Question: for what 𝑛 is  𝑃 𝑋 − 𝑝 > 0.05 ≤ 0.02



Summary: We found an approximate``confidence interval”

We are trying to estimate some parameter (e.g. 𝑝). We output 
an estimator 𝑋 such that  𝑃 𝑋 − 𝑝 > 𝜖 ≤ 𝛿 for some 𝜖, 𝛿 .

• Often found using CLT, other approaches also important (especially 
when variance is unknown).

• We say that we are 1 − 𝛿 * 100% confident that the result of our poll 
(𝑋) is an accurate estimate of 𝑝 to within 𝜖* 100% percent.

• In our example, 𝜖 = 0.05, 𝛿 = 0.02 .
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Idealized Polling

So far, we have been discussing “idealized polling”. Real life is 
normally not so nice L

Assumed we can sample people uniformly at random, not really 
possible in practice
– Not everyone responds
– Response rates might differ in different groups
– Will people respond truthfully?

Makes polling in real life much more complex than this idealized 
model!

14



Agenda

• Polling
• Odds and ends, including Law of Total Expectation
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Conditional Expectation
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Definition. Let 𝑋 be a discrete random variable then the conditional 
expectation of 𝑋 given event 𝐴 is

𝔼 𝑋 𝐴] = W
/ ∈ 1!

𝑥 ⋅ 𝑃 𝑋 = 𝑥 𝐴)

Note:

• Linearity of expectation still applies here
𝔼 𝑎𝑋 + 𝑏𝑌 + 𝑐 𝐴] = 𝑎 𝔼 𝑋 𝐴] + 𝑏 𝔼 𝑌 𝐴] + 𝑐



Law of Total Expectation
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Law of Total Expectation (event version). Let 𝑋 be a random variable 
and let events 𝐴", … , 𝐴# partition the sample space. Then,

𝔼[𝑋] = W
!$"

#

𝔼 𝑋 𝐴! ⋅ 𝑃(𝐴!)

Law of Total Expectation (random variable version). Let 𝑋 be a 
random variable and 𝑌 be a discrete random variable. Then,

𝔼[𝑋] = W
2 ∈1"

𝔼 𝑋 𝑌 = 𝑦 ⋅ 𝑃(𝑌 = 𝑦)



Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

𝔼 𝑋 = $
! ∈#)

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

= $
! ∈#)

𝑥 ⋅$
$%&

'

𝑃 𝑋 = 𝑥 𝐴$) ⋅ 𝑃(𝐴$)

=$
$%&

'

𝑃 𝐴$ $
!∈#)

𝑥 ⋅ 𝑃 𝑋 = 𝑥 𝐴$)

=$
$%&

'

𝑃 𝐴$ ⋅ 𝔼 𝑋 𝐴$]
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(by LTP)

(change order of sums)

(def of cond. expect.)



Example – Flipping a Random Number of Coins

Suppose someone gave us 𝑌 ∼ Poi(5) fair coins and we wanted to 
compute the expected number of heads 𝑋 from flipping those coins.

By the Law of Total Expectation

𝔼 𝑋 =W
!$3

4

𝔼 𝑋 𝑌 = 𝑖] ⋅ 𝑃 𝑌 = 𝑖 =
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Example – Flipping a Random Number of Coins

Suppose someone gave us 𝑌 ∼ Poi(5) fair coins and we wanted to compute the 
expected number of heads 𝑋 from flipping those coins.

By the Law of Total Expectation

𝔼 𝑋 =;
#$+

,

𝔼 𝑋 𝑌 = 𝑖] ⋅ 𝑃 𝑌 = 𝑖 =;
#$+

,
𝑖
2
⋅ 𝑃(𝑌 = 𝑖)

=
1
2
⋅;
#$+

,

𝑖 ⋅ 𝑃 𝑌 = 𝑖

= !
-
⋅ 𝔼 𝑌 = !

-
⋅ 5 = 2.5
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Example -- Elevator rides

The number 𝑋 of people who enter an elevator on the ground floor is a 
Poisson random variable with mean 10. If there are N floors above the 
ground floor, and if each person is equally likely to get off at any one of 
the N floors, independently of where others get off, compute the 
expected number of stops the elevator will make before discharging all 
the passengers.
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Law of total probability for continuous random variables.
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Definition. Let 𝐴 be an event and 𝑌 a continuous random variable. 
Then

𝑃[𝐴] = a
&4

4
𝑃 𝐴 𝑌 = 𝑦 𝑓5 𝑦 d𝑦



Example use of law of total probability
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Suppose that the time until server 1 crashes is 𝑋 ∼ 𝐸𝑥𝑝 𝜆 and the time 
until server 2 crashes is  independent, with  𝑌 ∼ 𝐸𝑥𝑝 𝜇 .
What is the probability that server 1 crashes before server 2?



Example use of law of total probability
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𝑋 ∼ 𝐸𝑥𝑝 𝜆 , 𝑌 ∼ 𝐸𝑥𝑝 𝜇 .
What is the probability that 𝑋 < 𝑌 ?

𝑃 𝑋 < 𝑌 = E
+

,
Pr 𝑋 < 𝑌 𝑋 = 𝑥) 𝑓. 𝑥 𝑑𝑥

= E
+

,
Pr 𝑌 > 𝑋 𝑋 = 𝑥)𝜆𝑒'/0 𝑑𝑥

= E
+

,
Pr 𝑌 > 𝑥 𝑋 = 𝑥) 𝜆𝑒'/0 𝑑𝑥

= E
+

,
Pr(𝑌 > 𝑥)𝜆𝑒'/0 𝑑𝑥

= E
+

,
𝑒'10 𝜆 𝑒'/0 𝑑𝑥

=
𝜆

𝜆 + 𝜇
E
+

,
𝜆 + 𝜇 ⋅ 𝑒'10 𝑒'/0 𝑑𝑥

=
𝜆

𝜆 + 𝜇



Alternative approach
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𝑋 ∼ 𝐸𝑥𝑝 𝜆 , 𝑌 ∼ 𝐸𝑥𝑝 𝜇 .
What is the probability that 𝑋 < 𝑌 ?

𝑃 𝑋 < 𝑌 = E
0$+

,
E
2$0

,
𝑓.,4 𝑥, 𝑦 dy d𝑥

= E
0$+

,
E
2$0

,
𝑓. 𝑥 ⋅ 𝑓4(𝑦)dy d𝑥



Covariance:  How correlated are 𝑋 and 𝑌? 

Recall that if 𝑋 and 𝑌 are independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 ⋅ 𝔼[𝑌]

Definition:  The covariance of random variables 𝑋 and 𝑌,
Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌]

Unlike variance, covariance can be positive or negative.  It has 
has value 0 if the random variables are independent.

Cov 𝑋, 𝑋 = ?
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Two Covariance examples:
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Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 ⋅ 𝔼[𝑌]

Suppose 𝑋 ∼ Bernoulli(𝑝)

If random variable 𝑌 = 𝑋 then
Cov 𝑋, 𝑌 = 𝔼 𝑋. − 𝔼 𝑋 . = Var 𝑋 = 𝑝(1 − 𝑝)

If random variable 𝑍 = −𝑋 then
Cov 𝑋, 𝑍 = 𝔼 𝑋𝑍 − 𝔼 𝑋 ⋅ 𝔼 𝑍

= 𝔼 −𝑋. − 𝔼 𝑋 ⋅ 𝔼 −𝑋
= −𝔼 𝑋. + 𝔼 𝑋 . = −Var 𝑋 = −𝑝(1 − 𝑝)



Reference Sheet (with continuous RVs)
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