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Agenda

* Polling a
* Odds and ends including Law of total expectation



Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.
Problem: We don’t know p, want to estimate it

Polling Procedure

fori=1,..,n:

1. Pick uniformly random person to call (prob: 1/N)
2. Ask them how they will vote

1, voting in favor
Xi — .
0, otherwise
Report our estimate of p: X=-3L.X



Roadmap: Bounding Error

Question: for whatn is P(|X — p| > 0.05) < 0.02

e

0 —005— P p+0.05 1
£ X

Crucial observation: the more samples we take, the more
likely X is to be close to its expectation p since asn — oo,

p(l—p))

n

By Central Limit Theorem X = %Z?:l Xi> N (p,



Question: for whatn is P(|X — p| > 0.05) < 0.02

By Central Limit Theorem X = 7—112’{‘:1)(1. >N (p,_p(l‘p))

n

P(|X —p| > 0.05)

= P(|Z| > 0.05 YE )

Jr(1 —p)




Question: for whatn is P(|X — p| > 0.05) < 0.02

P(|Y — pl > 0.05) By Central Limit Theorem X = %Z{;lxi SN (p’p(ln—p))
n
= P(|Z] > 0.05 vn )
Jp(1 =p)
1 isalways>2 so 0.05 Vn >2005\/7TL _01\/,771
vp(1-p) - : o (—p) = : = (.




Question: for whatn is P(|X — p| > 0.05) < 0.02

P(li _ pl > 0_05) By Central Limit Theorem X =%Z’{‘=1Xi - ]\/‘(p,p(l—n_p))
n

= P(|Z] > 0.05 vn )
Vp(1 - p)

so 005—"" > 2.005/n =0.1yn

Vvp(1-p)
n
So P(|Z| > 0.05 vn ) < P(|Z] > 0.14/n)
p(1-p)

Want to choose n so that this is at most 0.02 8




Solve for n such that P(|Z| > 0.1\/n) < 0.02 where Z - N (0, 1)

* This assumes n is large enough that Z ~ NV (0, 1)



We want P(|Z| > 0.1y/n) < 0.02 where Z - N (0,1)

* Assuming Z ~ NV (0, 1) enough to show that
P(Z > 0.1y/n) < 0.01 since V' (0, 1) is symmetric about 0

Or equivalently, choose n such that

P(Z < 0.1yn) = 0.99
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® Table: P(Z < z) when Z ~ N(0,1)

Table of ®(z) CDF of
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Standard Normal 0.0 | 0.5 0.50399 | 0.50798 | 0.51197 | 0.51595 | 0.51994 | 0.52392 | 0.5279 | 0.53188 | 0.53586

0.1 | 0.53983 | 0.5438 | 0.54776 | 0.55172 | 0.55567 | 0.55962 | 0.56356 | 0.56749 | 0.57142 | 0.57535

0.2 | 0.57926 | 0.58317 | 0.58706 | 0.59095 | 0.59483 | 0.59871 | 0.60257 | 0.60642 | 0.61026 | 0.61409

L] ] (]
DIStrlbUtlon 0.3 | 0.61791 | 0.62172 | 0.62552 | 0.6293 | 0.63307 | 0.63683 | 0.64058 | 0.64431 | 0.64803 | 0.65173

0.4 | 0.65542 | 0.6591 | 0.66276 | 0.6664 | 0.67003 | 0.67364 | 0.67724 | 0.68082 | 0.68439 | 0.68793

0.5 | 0.69146 | 0.69497 | 0.69847 | 0.70194 | 0.7054 | 0.70884 | 0.71226 | 0.71566 | 0.71904 | 0.7224

0.6 | 0.72575 | 0.72907 | 0.73237 | 0.73565 | 0.73891 | 0.74215 | 0.74537 | 0.74857 | 0.75175 | 0.7549

Ch 00S€e 1 SO 0.7 | 0.75804 | 0.76115 | 0.76424 | 0.7673 | 0.77035 | 0.77337 | 0.77637 | 0.77935 | 0.7823 | 0.78524
0.8 | 0.78814 | 0.79103 | 0.79389 | 0.79673 | 0.79955 | 0.80234 | 0.80511 | 0.80785 | 0.81057 | 0.81327

0.9 | 0.81594 | 0.81859 | 0.82121 | 0.82381 | 0.82639 | 0.82894 | 0.83147 | 0.83398 | 0.83646 | 0.83891

P (Z < 0. 1\/71) > 0.99. 1.0 | 0.84134 | 0.84375 | 0.84614 | 0.84849 | 0.85083 | 0.85314 | 0.85543 | 0.85769 | 0.85993 | 0.86214
. 1.1 | 0.86433 | 0.8665 | 0.86864 | 0.87076 | 0.87286 | 0.87493 | 0.87698 | 0.879 | 0.881 | 0.88298
i.e. 1.2 | 0.88493 | 0.88686 | 0.88877 | 0.89065 | 0.89251 | 0.89435 | 0.89617 | 0.89796 | 0.89973 | 0.90147
) 1.3 [ 0.9032 | 0.9049 | 0.90658 | 0.00824 | 0.90988 | 0.91149 | 0.91309 | 0.91466 | 0.91621 | 0.91774

D (0 1 Tl) > (.99 1.4 | 0.01924 | 0.92073 | 0.9222 | 0.92364 | 0.92507 | 0.92647 | 0.92785 | 0.92922 | 0.93056 | 0.93189
-1y - U. 1.5 | 0.93319 | 0.93443 | 0.93574 | 0.93699 | 0.93822 | 0.93943 | 0.94062 | 0.94179 | 0.94295 | 0.94408

1.6 | 0.9452 | 0.9463 | 0.94738 | 0.94845 | 0.9495 | 0.95053 | 0.95154 | 0.95254 | 0.95352 | 0.95449

1.7 | 0.95543 | 0.95637 | 0.95728 | 0.95818 | 0.95907 | 0.95994 | 0.9608 | 0.96164 | 0.96246 | 0.96327

1.8 | 0.96407 | 0.96485 | 0.96562 | 0.96638 | 0.96712 | 0.96784 | 0.96856 | 0.96926 | 0.96995 | 0.97062

— 1.9 | 0.97128 | 0.97193 | 0.97257 | 0.9732 | 0.97381 | 0.97441 | 0.975 0.97558 | 0.97615 | 0.9767
From table Z = 2'33 Works 2.0 | 0.97725 | 0.97778 | 0.97831 | 0.97882 | 0.97932 | 0.97982 | 0.9803 | 0.98077 | 0.98124 | 0.98169

2.1 | 0.98214 | 0.98257 | 0.983 0.98341 | 0.98382 | 0.98422 | 0.98461 | 0.985 0.98537 | 0.98574

2.2 | 0.9861 | 0.98645 | 0.98679 0.98745 | 0.98778 | 0.98809 | 0.9884 | 0.9887 | 0.98899

2.3 | 0.98928 | 0.98956 | 0.98983{ 0.9901 §0.99036 | 0.99061 | 0.99086 | 0.99111 | 0.99134 | 0.99158

2.4 1 0.9918 | 0.99202 | 0.99224 0.99266 | 0.99286 | 0.99305 | 0.99324 | 0.99343 | 0.99361

2.5 | 0.99379 | 0.99396 | 0.99413 | 0.9943 | 0.99446 | 0.99461 | 0.99477 | 0.99492 | 0.99506 | 0.9952

2.6 | 0.99534 | 0.99547 | 0.9956 | 0.99573 | 0.99585 | 0.99598 | 0.99609 | 0.99621 | 0.99632 | 0.99643

2.7 | 0.99653 | 0.99664 | 0.99674 | 0.99683 | 0.99693 | 0.99702 | 0.99711 | 0.9972 | 0.99728 | 0.99736

2.8 | 0.99744 | 0.99752 | 0.9976 | 0.99767 | 0.99774 | 0.99781 | 0.99788 | 0.99795 | 0.99801 | 0.99807

2.9 | 0.99813 | 0.99819 | 0.99825 | 0.99831 | 0.99836 | 0.99841 | 0.99846 | 0.99851 | 0.99856 | 0.99861

3.0 | 0.99865 | 0.99869 | 0.99874 | 0.99878 | 0.99882 | 0.99886 | 0.99889 | 0.99893 | 0.99896 | 0.999




Question: for whatn is P(|X — p| > 0.05) < 0.02

« Sowe can choose 0.1\/n = 2.33

Choose nn so or \/T_l > 23.3

P(Z < 0.1yn) = 0.99.

i.e., e Thenn > 543 > (23.3)% would be
®(0.14/n) = 0.99 good enough ... ifwehad Z ~ V' (0, 1)

From table z = 2.33 works

 Since we only have Z — WV (0, 1) there
is some loss due to approximation error
(which can be dealt with).
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Summary: We found an approximate confidence interval”

We are trying to estimate some parameter (e.g. p). We output
an estimator X such that P(|X —p| > €) < & for some (¢, 8).

+ Often found using CLT, other approaches also important (especially
when variance is unknown).

* We say that we are (1 — §)* 100% confident that the result of our poll
(X)is an accurate estimate of p to within e* 100% percent.

* Inour example, (¢ = 0.05,6 = 0.02).
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Idealized Polling

So far, we have been discussing “idealized polling”. Real life is
normally not so nice ®

Assumed we can sample people uniformly at random, not really
possible in practice

— Not everyone responds

— Response rates might differ in different groups

— Will people respond truthfully?

Makes polling in real life much more complex than this idealized
model!

14



Agenda

* Polling
* Odds and ends, including Law of Total Expectation
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Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
- expectation of X given event A is

* Linearity of expectation still applies here
ElaX + bY +c| Al =a E|X |A]+ b E[Y |A] + ¢

16



Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
~and let events A4, ..., A, partition the sample space. Then,

E[X] = ) E[X| 4] P(4)
=1

_____________________________________________________________________________________________________________________________________________________________________

Law of Total Expectation (random variable version). Let X be a
- random variable and Y be a discrete random variable. Then,

E[X]= ) E[X|Y=y]-P(Y =)
Yy €Qy



Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

E|X] = z x-P(X =x)

x €EQx
by LTP
= ) = ZPO( = % 147) - P(A) (by LTE)
XE.QX
Z P(4; )Z x-P(X =x|4;) (change order of sums)
XENx
n

(def of cond. expect.)

ZP(A) E[X|A;]
=1
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Example - Flipping a Random Number of Coins

Suppose someone gave us Y ~ Poi(5) fair coins and we wanted to
compute the expected number of heads X from flipping those coins.

By the Law of Total Expectation

[E[X]zZIE[XIYzi]-P(Yzi):
=0

19



Example - Flipping a Random Number of Coins

Suppose someone gave us Y ~ Poi(5) fair coins and we wanted to compute the
expected number of heads X from flipping those coins.

By the Law of Total Expectation

E[X] = Z[E[X|Y—l . P(Y = i_z
—;21 P(Y =

20



Example -- Elevator rides

The number X of people who enter an elevator on the ground floor s a
Poisson random variable with mean 10. If there are N floors above the
ground floor, and if each person is equally likely to get off at any one of
the N floors, independently of where others get off, compute the
expected number of stops the elevator will make before discharging all
the passengers.

22






Law of total probability for continuous random variables.

éThen

_____________________________________________________________________________________________________________________________________________________________________
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Example use of law of total probability

Suppose that the time until server 1 crashesis X ~ Exp (1) and the time
~until server 2 crashes is independent, with ¥ ~ Exp (u). '

What is the probability that server 1 crashes before server 2?

25



Example use of law of total probability

X ~ Exp (1),Y ~ Exp (w).
What is the probability that X <V ?

co

PX<Y) = _[ PriX <Y |X =x) fy(x)dx
0

=j Pr(Y > X | X = x)le ™™ dx
0

=f Pr(Y > x| X =x) le™™ dx
0

=j Pr(Y > x)le ¥ dx
0
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Alternative approach

X ~ Exp (1),Y ~ Exp ().
What is the probability that X <Y ?

P(X<Y) =

T8

j fX,Y(x; y)dy dx
y=x

=0

8
8

. j ) jy @) f )y dx

X

27



Covariance: How correlated are X and Y?

Recall that if X and Y are independent, E|XY| = E|X| - E[Y]

Definition: The covariance of random variables X and Y,
Cov(X,Y) = E|XY]| — E|X] - E[Y]

Unlike variance, covariance can be positive or negative. It has
has value 0 if the random variables are independent.

Cov(X,X)=>

28



. Cov(X,Y) = E[XY] — E[X] - E[Y]
Two Covariance examples:

Suppose X ~ Bernoulli(p)

If random variable Y = X then
Cov(X,Y) = E[X?] — E[X]? = Var(X) = p(1 — p)

If random variable Z = —X then
Cov(X,Z) = E|XZ] — E[X] - E[Z]
= E[-X?] — E[X] - E[-X]
= —E[X?] + E[X]? = —Var(X) = —p(1 — p)

29



Reference Sheet (with continuous RVs)

Discrete Continuous
Joint PMF/PDF ey (59) = PX =%, = ) fry(®%y) # PX =x,Y =)
. X ry
Joint CDF Fr(y) = Y Y Pry(6:5) F@ = [ | fultsdsd
t<x ssy =00 =00
Normalization Y pryxy) =1 | | feydndy =1
X y -0 J -0
Marginal _ *
PMF% PDE px(x) = Zy:px,y(x, y) fr(x) = f_ } fry(x,y)dy
Expectation E[gX,Y)] = ZZ g Mexy(xy) | E[g(X,Y)] = f j 90, ) fxy (x, y)dxdy
X y —00 /=00
Conditional D1y (e |y) = Pxy(X,y) £ o 37)i= fxy(x%,y)
PME/PDF o Dy (¥) e fr )
Conditional ] — %
Expectation EX|Y=y]= Zxwa(X | y) E[X|Y=y]= f_oofoIY(x | y)dx
Independence vx,y, px,y(x» y) = px(X)py(¥) vx,y, fX,Y(x» V) = fxX)fy ()




