CSE 312
 Foundations of Computing II

Lecture 2: Permutations, combinations, the Binomial Theorem and more.

w

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Style Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Grading, syllabus and administrivia

- Questions?

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs
https://pollev.com/ annakarlin185

Quick Summary

- Sum Rule

If you can choose from

- Either one of n options,
- OR one of m options with NO overlap with the previous n,
then the number of possible outcomes of the experiment is $n+m$
- Product Rule

In a sequential process, if there are

- n_{1} choices for the first step,
- n_{2} choices for the second step (given the first choice), ..., and
- \bar{n}_{k} choices for the $k^{\text {th }}$ step (given the previous choices),
then the total number of outcomes is $n_{1} \times n_{2} \times \cdots \times n_{k}$
- Complementary Counting

Quick Summary

- K-sequences: How many length k sequences over alphabet of size n ? repetition allowed.
- Product rule $\rightarrow \mathrm{n}^{\mathrm{K}}$
- K-permutations: How many length k sequences over alphabet of size n , without repetition?
- Permutation $\rightarrow \frac{n!}{(n-k)!}$
- K-combinations: How many size k subsets of a set of n distinct elements (without repetition and without order)?
- Combination $\boldsymbol{\rightarrow}\binom{n}{k}=\frac{n!}{(k)^{n-k)!}}$

Product rule - Another example 5 books

Alice

Example Book Assignment

Book assignment - Modeling

Correct?

Poll:
A. right
B. Overcount
C. Undercount
D. No idea

$$
\left.2^{5}=32 \text { options }--\cdots\right\}
$$

https://pollev.com/annakarlin185 X

Problem - Overcounting

Problem: We are counting some invalid assignments!!!
 \rightarrow overcounting!

What went wrong in the sequential process? After assigning set A to Alice, set B is no longer a valid option for Bob

Book assignment - Second try

Product rule - A better way
5 books
Alice

Book assignments - Choices tell you who gets each book

Lesson: Representation of what we are counting is very important!

Think about the various possible ways you could make a sequence of choices that leads to an outcome in the set of outcomes you are trying to count.

Example - Counting Paths

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow ?

Example - Counting Paths -2

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow ?
https://pollev.com/ annakarlin185
\rightarrow A. 2^{7}
B. $\frac{7!}{4!}$

Symmetry in Binomial Coefficients

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Why??

This is called an Algebraic proof, i.e., Prove by checking algebra

Symmetry in Binomial Coefficients - A different proof
Fact. $\binom{n}{k}=\binom{n}{n-k}$
Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

Symmetry in Binomial Coefficients - A different proof

Fact. $\binom{n}{k}=\binom{n}{n-k}$

Two equivalent ways to choose k out of n objects (unordered)

1. Choose which k elements are included
2. Choose which $n-k$ elements are excluded

This is called a combinatorial argument/proof

- Let S be a set of objects
- Show how to count $|S|$ one way $=>|S|=N$
- Show how to count $|S|$ another way $=>|S|=m$

More examples of combinatorial proofs coming soon!

Example - Counting Paths - 3

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow but stopping at Starbucks on $3^{\text {rd }}$ and Pike?"

Example - Counting Paths - 3

"How many ways to walk from $1^{\text {st }}$ and Spring to $5^{\text {th }}$ and Pine only going \uparrow and \rightarrow but stopping at Starbucks on $3^{\text {rd }}$ and Pike?"

Poll:
A. $\binom{7}{3}$
B. $\binom{7}{2}\binom{7}{1}$
C. $\binom{4}{2}\binom{3}{1}$
D. $\binom{4}{2}\binom{3}{2}$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Binomial Theorem: Idea

$$
(x+y)^{n}
$$

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =x x+x y+y x+y y \\
& =x^{2}+2 x y+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
(x+y)^{4} & =(x+y)+y(x+y) \\
& =x x x x+y y y y+x y x y+y x y y+\ldots
\end{aligned}
$$

$$
-x^{4}+-x^{3} y+x^{2} y^{3}+\frac{x y^{3}}{x} y^{3}+-y^{42}
$$

Binomial Theorem: Idea

Poll: What is the coefficient for $x y^{3}$?

https://pollev.com/ annakarlin185

Binomial Theorem: Idea

$$
(x+y)^{n}=(x+y)(x+y)(x+y) \cdots(x+y)
$$

Each term is of the form $x^{k} y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^{k} y^{n-k}$?

$$
\binom{n}{k}=\binom{n}{n k}
$$

Binomial Theorem: Idea

$$
(x+y)^{n}=(x+y)(x+y)(x+y) \cdots(x+y)
$$

Each term is of the form $x^{k} y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^{k} y^{n-k}$? The number of ways to choose k of the n variables we multiple to be an x (the rest will be y).

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

Binomial Theorem

Theorem. Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$
\begin{aligned}
& (x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& (1+1)^{n} \\
& =2^{n-2} \\
& x=1 \quad y=1
\end{aligned}
$$

Corollary.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Example - Word Permutations

How many ways to re-arrange the letters in the word "MATH"?

Poll:
A. $\binom{26}{4}$
B. 4^{4}
C. $4!$
D. I don't know
https://pollev.com/ annakarlin185

Example - Word Permutations

How many ways to re-arrange the letters in the word "MUUMUU"?
$6!$

Example - Word Permutations

How many ways to re-arrange the letters in the word "MUUMUU"?

Choose where the 2 M's go, and then the U's are set OR Choose where the 4 U's go, and then the M's are set

Either way, we get $\binom{6}{2} \cdot\binom{4}{4}=\binom{6}{4} \cdot\binom{2}{2}=\frac{6!}{2!4!}$

Another way to think about it
How many ways to re-arrange the letters in the word "MUUMUU"?

Arrang incictars as if they were distinct. (M) $\mathrm{J}_{1} \cup M_{2} \mathrm{U}_{3} \mathrm{U}_{4}$

Then divide by 4 ! to account for duplicate M 's and divide by 2 ! to account for duplicate U's.
Yields $\frac{6!}{2!4!}$

Another example - Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

Poll:
\Rightarrow A. $7!$
$\Rightarrow B \cdot \frac{7!}{3!}$
$\Rightarrow C \cdot \frac{7!}{3!2!1!1!}$
$\Rightarrow D \cdot \frac{\binom{7}{3} \cdot\binom{4}{2} \cdot 2!}{G^{\prime} 5}$

https://pollev.com/ annakarlin185

Multinomial coefficients

If we have k types of objects, with n_{1} of the first type, n_{2} of the second type, \ldots, n_{k} of the $\mathrm{k}^{\text {th }}$ type, where
$n=n_{1}+n_{2}+\cdots+n_{k}$ then the number of arrangements of the n objects is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{\left(n_{1}\right)!n_{2}!\cdots n_{k}!}
$$

Note that objects of the same type are indistinguishable.

Example - Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

$$
\begin{aligned}
& n=7 \text { (length of sequence) } K=4 \text { types }=\{G, O, D, Y\} \\
& n_{1}=3, n_{2}=2, n_{3}=1, n_{4}=1 \\
& \binom{6}{4,2,1,1}=\frac{6!}{2!4!1!1!}
\end{aligned}
$$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B=\varnothing$)

Sum Rule: $|A \cup B|=|A|+|B|$

Inclusion-Exclusion

But what if the sets are not disjoint?

Fact. $|A \cup B|=|A|+|B|-|A \cap B|$

Inclusion-Exclusion

What if there are three sets?

Fact.

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C|< \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

$$
\begin{aligned}
& |A|=43 \\
& |B|=20 \\
& |C|=35 \\
& |A \cap B|=7 \\
& |A \cap C|=16 \\
& |B \cap C|=11 \\
& |A \cap B \cap C|=4 \\
& |A \cup B \cup C|=? ? ?
\end{aligned}
$$

Inclusion-Exclusion

Let A, B be sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

In general, if $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| & =\text { singles }- \text { doubles }+ \text { triples }- \text { quads }+\ldots \\
& =\left(\left|A_{1}\right|+\cdots+\left|A_{n}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\ldots+\left|A_{n-1} \cap A_{n}\right|\right)+\ldots
\end{aligned}
$$

Agenda

- Recap \& Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Combinatorial proof: Show that $M=N$

- Let S be a set of objects
- \quad Show how to count $|S|$ one way $=>|S|=M$
- Show how to count $|S|$ another way $=>|S|=N$
- Conclude that $M=N$

Binomial Coefficient - Many interesting and useful properties

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n}=1 \quad\binom{n}{1}=n \quad\binom{n}{0}=1
$$

\Rightarrow Fact. $\binom{n}{k}=\binom{n}{n-k} \quad$ Symmetry in Binomial Coefficients
Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad$ Pascal's Identity

\Rightarrow Fact. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
Follows from Binomial theorem

Pascal's Identities

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
Algebraic argument:

Let's see a combinatorial argument

Example - Binomial Identity

$$
\text { Fact. } \begin{aligned}
\binom{n}{k} & =\binom{n-1}{k-1}+\binom{n-1}{k} \\
|S| & =|A|+|B|
\end{aligned}
$$

$$
S=A \cup B, \text { disjoint }
$$

S : the set of size k subsets of $[n]=\left\{1,2, \cdots\right.$, (c) $\rightarrow|S|=\binom{n}{k}$
A : the set of size k subsets of $[n]$ including n B : the set of size k subsets of $[n]$ NOT including n

Example - Binomial Identity

Fact. $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
 $$
|S|=|A|+|B|
$$

S : the set of size k subsets of $[n]=\{1,2, \cdots,[n\}) \rightarrow|S|=\binom{n}{k}$ e.g.: $n=4, S=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
A : the set of size k subsets of $[n]$ including n

$$
A=\{\{1(6),\{2(1),\{3(4)\}, \quad n=4
$$

B : the set of size k subsets of $[n]$ NOT including n

$$
B=\{\{1,2\},\{1,3\},\{2,3\}\}
$$

Example - Binomial Identity

$\begin{array}{r}\left.\text { Fact. } \begin{array}{r}n \\ k\end{array}\right) \\ |S|\end{array} \frac{\binom{n-1}{k-1}+\binom{n-1}{k}}{|A|} \quad|B| \quad S=A \cup B$

S : the set of size k subsets of $[n]=1,2, n-n\}$
A : the set of size k subsets of $[n]$ including n
B : the set of size k subsets of $[n]$ NOT including n
n is in set, need to choose $k-1$ elements from $[n-1]$

$$
|A|=\binom{n-1}{k-1}
$$

n not in set, need to choose k elements from $[n-1]$

$$
|B|=\binom{n-1}{k}
$$

combinatorial argument/proof

- Elegant
- Simple
- Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

Algebraic argument

- Brute force
- Less Intuitive

