CSE 312 Foundations of Computing II

Lecture 2: Permutations, combinations, the Binomial Theorem and more.

Anna R. Karlin

Slide Style Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ③

1

Grading, syllabus and administrivia

• Questions?

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

https://pollev.com/ annakarlin185

Quick Summary

• Sum Rule

If you can choose from

- Either one of *n* options,
- OR one of m options with NO overlap with the previous n,

then the number of possible outcomes of the experiment is n + m

Product Rule

In a sequential process, if there are

- n_1 choices for the first step,
- n_2 choices for the second step (given the first choice), ..., and
- \overline{n}_k choices for the k^{th} step (given the previous choices),

then the total number of outcomes is $n_1 \times n_2 \times \cdots \times n_k$

• Complementary Counting

Quick Summary

- K-sequences: How many length k sequences over alphabet of size n? repetition allowed.
 - Product rule $\rightarrow n^{K}$
- K-permutations: How many length k sequences over alphabet of size n, without repetition?
 - Permutation $\rightarrow \frac{n!}{(n-k)!}$
- K-combinations: How many size k subsets of a set of n distinct elements (without repetition and without order)?

Product rule – Another example

5 books

among Alice, Bob, and Charlie?" Every book to one person,

to distribute 5 books

"How many ways are there

everyone gets ≥ 0 books.

Problem – Overcounting

Problem: We are counting some invalid assignments!!!
→ overcounting!

What went wrong in the sequential process?After assigning set *A* to Alice, set*B* is no longer a valid option for Bob

Product rule – A better way

5 books

"How many ways are there to distribute 5 books among Alice, Bob, and Charlie?"

Every book to one person, everyone gets ≥ 0 books.

Book assignments – Choices tell you who gets each book

Lesson: Representation of what we are counting is very important!

Think about the various possible ways you could make a sequence of choices that leads to an outcome in the set of outcomes you are trying to count.

This Photo by Unknown Author is licensed under CC BY-NC

Example – Counting Paths

"How many ways to walk from 1^{st} and Spring to 5^{th} and Pine only going \uparrow and \rightarrow ?

Example – Counting Paths -2

"How many ways to walk from 1^{st} and Spring to 5^{th} and Pine only going \uparrow and \rightarrow ?

15

Symmetry in Binomial Coefficients – A different proof

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

Two equivalent ways to choose *k* out of *n* objects (unordered)

- 1. Choose which *k* elements are included
- 2. Choose which n k elements are excluded

Symmetry in Binomial Coefficients – A different proof

Fact.
$$\binom{n}{k} = \binom{n}{n-k}$$

Two equivalent ways to choose *k* out of *n* objects (unordered)

- 1. Choose which *k* elements are included
- 2. Choose which n k elements are excluded

This is called a combinatorial argument/proof

- Let *S* be a set of objects
- Show how to count |S| one way => |S| = N
- Show how to count |S| another way => |S| = m

More examples of combinatorial proofs coming soon!

Example – Counting Paths - 3

"How many ways to walk from 1^{st} and Spring to 5^{th} and Pine only going \uparrow and \rightarrow but stopping at Starbucks on 3^{rd} and Pike?"

Example – Counting Paths - 3

"How many ways to walk from 1st and Spring to 5th and Pine only going ↑ and → but stopping at Starbucks on 3rd and Pike?"

https://pollev.com/ annakarlin185

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

(x+y)"

22

4

$$(x + y)^{2} = (x + y)(x + y)$$
$$= xx + xy + yx + yy$$
$$= x^{2} + 2xy + y^{2}$$

$$(x + y)^{4} = (x + y)(x + y)(x + y)(x + y)$$

= $xxxx + yyyy + xyxy + yxyy + ...$

_x⁴ + _x³y +

Xy

ن فهر في

Poll: What is the coefficient for xy^3 ? A. 4 B. $\binom{4}{1}$ C. $\binom{4}{3}$ D. 3

https://pollev.com/ annakarlin185

$$(x + y)^{4} = (x + y)(x + y)(x + y)(x + y)$$

= xxxx + yyyy + xyxy + yxyy + ...

$$(x + y)^n = (x + y)(x + y)(x + y) \cdots (x + y)$$

Each term is of the form $x^k y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^k y^{n-k}$?

$$\binom{n}{k} = \binom{n}{nk}$$

$$(x + y)^n = (x + y)(x + y)(x + y) \cdots (x + y)$$

Each term is of the form $x^k y^{n-k}$, since each term is is made by multiplying exactly n variables, either x or y.

How many times do we get $x^k y^{n-k}$? The number of ways to choose k of the n variables we multiple to be an x (the rest will be y).

$$\binom{n}{k} = \binom{n}{n-k}$$

25

Binomial Theorem

Binomial Theorem

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

How many ways to re-arrange the letters in the word "MATH"?

https://pollev.com/ annakarlin185

How many ways to re-arrange the letters in the word "MUUMUU"?

How many ways to re-arrange the letters in the word "MUUMUU"?

Choose where the 2 M's go, and then the U's are set **OR** Choose where the 4 U's go, and then the M's are set

Either way, we get $\binom{6}{2} \cdot \binom{4}{4} = \binom{6}{4} \cdot \binom{2}{2} = \frac{6!}{2!4!}$

Another way to think about it

How many ways to re-arrange the letters in the word "MUUMUU"?

Arrange the 0 lettors as if they were distinct. $M U_1 U_1 M_2 U_3 U_4$

Then divide by 4! to account for duplicate M's and divide by 2! to account for duplicate U's.

Another example – Word Permutations

How many ways to re-arrange the letters in the word "GODOGGY"?

Poll:

 $\xrightarrow{} A. 7!$ $\xrightarrow{} B. \frac{7!}{3!}$

C. $\frac{7!}{3!2!1!1!}$

 $\overrightarrow{D}. \ \begin{pmatrix} 7\\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4\\ 2 \end{pmatrix} \cdot \underbrace{3} \\ 2 \end{pmatrix}$

Gg

66 0

https://pollev.com/ annakarlin185

Multinomial coefficients

If we have k types of objects, with n_1 of the first type, n_2 of the second type, ..., n_k of the kth type, where $n = n_1 + n_2 + \dots + n_k$ then the number of arrangements of the n objects is

 $\binom{n}{n_1, n_2, \dots, n_k} = \frac{\binom{n!}{n_1! n_2! \cdots n_k!}$

Note that objects of the same type are indistinguishable.

How many ways to re-arrange the letters in the word "GODOGGY"?

n= 7 (length of sequence) K = 4 types = {G, O, D, Y} $n_1 = 3, n_2 = 2, n_3 = 1, n_4 = 1$

$$\binom{6}{4,2,1,1} = \frac{6!}{2!4!1!1!}$$

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Recap Disjoint Sets

Sets that do not contain common elements $(A \cap B = \emptyset)$

Sum Rule: $|A \cup B| = |A| + |B|$

Inclusion-Exclusion

But what if the sets are not disjoint?

|A| = 43|B| = 20 $|A \cap B| = 7$ $|A \cup B| = ???$

Fact. $|A \cup B| = |A| + |B| - |A \cap B|$

Inclusion-Exclusion What if there are three sets? A Ċ Fact. $|A \cup B \cup C| = |A| + |B| + |C|$ - $|A \cap B| - |A \cap C| - |B \cap C|$ $+ |A \cap B \cap C|$

Not drawn to scale

$$|A| = 43$$

$$|B| = 20$$

$$|C| = 35$$

$$|A \cap B| = 7$$

$$|A \cap C| = 16$$

$$|B \cap C| = 11$$

$$|A \cap B \cap C| = 4$$

$$|A \cup B \cup C| = ???$$

Inclusion-Exclusion

Let A, B be sets. Then $|A \cup B| = |A| + |B| - |A \cap B|$

In general, if A_1, A_2, \dots, A_n are sets, then

$$\begin{split} |A_1 \cup A_2 \cup \dots \cup A_n| &= singles - doubles + triples - quads + \dots \\ &= (|A_1| + \dots + |A_n|) - (|A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + \dots \end{split}$$

Agenda

- Recap & Examples
- Binomial Theorem
- Multinomial Coefficients
- Inclusion-Exclusion
- Combinatorial Proofs

Combinatorial proof: Show that *M* = *N*

- Let *S* be a set of objects
- Show how to count |S| one way => |S| = M
- Show how to count |S| another way => |S| = N

 $\binom{n}{n} = \binom{n}{n-k}$

• Conclude that *M* = *N*

Binomial Coefficient – Many interesting and useful properties

Let's see a combinatorial argument

Example – Binomial Identity
Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

 $|S| = |A| + |B|$

 $S = A \cup B$, disjoint

S: the set of size k subsets of $[n] = \{1, 2, \dots, n\} \rightarrow |S| = \binom{n}{k}$

A: the set of size k subsets of [n] including nB: the set of size k subsets of [n] NOT including n

Sum rule: $|A \cup B| = |A| + |B|$ 46

Example – Binomial Identity

Fact.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

 $|S| = |A| + |B|$

S: the set of size k subsets of $[n] = \{1, 2, \dots, n\} \Rightarrow |S| = \binom{n}{k}$ e.g.: n = 4, $S = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$ A: the set of size k subsets of [n] including n $A = \{\{1,4\}, \{2,4\}, \{3,4\}\}, n = 4$ B: the set of size k subsets of [n] NOT including n $B = \{\{1,2\}, \{1,3\}, \{2,3\}\}$

combinatorial argument/proof

- Elegant
- Simple
- Intuitive

This Photo by Unknown Author is licensed under CC BY-SA

Algebraic argument

- Brute force
- Less Intuitive

