CSE 312
Foundations of Computing II
18: Joint Distributions (+ recap polling)
www.slido.com/2226110

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Analogues for continuous distributions
- LOTUS for joint distns
- Recap of polling example.

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a large amount of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop

Review Cartesian Product

Definition. Let A and B be sets. The Cartesian product of A and B is denoted

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Example.

$$
\{1,2,3\} \times\{4,5\}=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
$$

If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.
The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denolled \mathbb{R}^{2})

Joint PMFs and Joint Range

$P_{X}(a)=P(X=a)$

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega_{X, Y}=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega_{X} \times \Omega_{Y}
$$

Note that

$$
\sum_{(s, t) \in \Omega_{X, Y}} p_{X, Y}(s, t)=1
$$

Example - Weird Dice $P_{X}(x)=\left\{\begin{array}{cc}\frac{1}{4} & x \in\{1,2,3,4\} \\ 0 & 0.60\end{array}\right.$

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.
$\Omega_{X}=\{1,2,3,4\}$ and $\Omega_{Y}=\{1,2,3,4\}$

In this problem, the joint PMF is if
$p_{X, Y}(x, y)=\left\{\begin{array}{ll}1 / 16 & \text { if } x, y \in \Omega_{X, Y} \\ 0 & \text { otherwise }\end{array}=p_{X}(x) p_{y}(y)\right.$

$\mathbf{x} \mid \mathbf{y}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{2}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{3}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{4}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$

and the joint range is (since all combinations have non-zero probability)
$\Omega_{X, Y}=\Omega_{X} \times \Omega_{Y}$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$
$\Omega_{U, W}=\left\{(u, w) \in \Omega_{U} \times \Omega_{W}: u \leq w\right\} \neq \Omega_{U} \times \Omega_{W}$

The joint PMF $p_{U, W}(u, w)=P(U=u, W=w)$ is
$p_{U, W}(u, w)= \begin{cases}2 / 16 & \text { if }(u, w) \in \Omega_{U} \times \Omega_{W} \text { where } w>u \\ 1 / 16 & \text { if }(u, w) \in \Omega_{U} \times \Omega_{W} \text { where } w=u \\ 0 & \text { otherwise }\end{cases}$

UIw	1	2	3	4
1	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
2	0	$1 / 16$	$2 / 16$	$2 / 16$
3	0	0	$1 / 16$	$2 / 16$
4	0	0	0	$1 / 16$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $P(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $P(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?

Just apply LTP over the possible values of W :

$$
\begin{aligned}
& p_{U}(1)=7 / 16 \\
& p_{U}(2)=5 / 16 \\
& p_{U}(3)=3 / 16 \\
& p_{U}(4)=1 / 16
\end{aligned}
$$

U\|w	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
\begin{aligned}
p_{X}(a) & \left.=\sum_{b \in \Omega_{Y}} \frac{p_{X, Y}(a, b)}{P(X=a)}, Y=b\right)
\end{aligned}
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega_{X}} p_{X, Y}(a, b)$

$$
F_{X, Y}(0, b)=P\left(X_{\leqslant 0}, Y_{\leqslant b}\right)
$$

$f_{X}(x) d x$

Continuous distributions on $\mathbb{R} \times \mathbb{R}$

Definition. The joint probability density function (PDF) of continuous random variables X and Y is a function $f_{X, Y}$ defined on $\mathbb{R} \times \mathbb{R}$ such that

- $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$ for $A \subseteq \mathbb{R} \times \mathbb{R}$ the probability that $(X, Y) \in A$ is $\iint_{A} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y$ The (marginal) PDFs f_{X} and f_{Y} are given by

$$
\begin{aligned}
& -f_{X}(x)=\int_{-\infty}^{\infty} \frac{f_{X, Y}(x, y)}{} \mathrm{d} y \\
& -f_{Y}(y)=\int_{-\infty}^{\infty} \frac{f_{X, Y}(x, y) \mathrm{d} x}{}
\end{aligned}
$$

Independence and joint distributions

Definition. Discrete random variables X and Y are independent iff

- $p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)$ for all $x \in \Omega_{X}, y \in \Omega_{Y}$

Definition. Continuous random variables X and Y are independent iff

- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$ for all $x, y \in \mathbb{R}$

Example - Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega_{U}=\{1,2,3,4\}$ and $\Omega_{W}=\{1,2,3,4\}$

Example - Uniform distribution on a unit disk
Suppose that a pair of random variables (X, Y) is chosen uniformly \mid from the set of real points (x, y) such that $x^{2}+y^{2} \leq 1$

Example - Uniform distribution on a unit disk

Example - Uniform distribution on a unit disk

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The expectation of some function $g(x, y)$ with inputs X and Y

$$
\mathbb{E}[g(X, Y)]=\sum_{a \in \Omega_{X}} \sum_{b \in \Omega_{Y}} g(a, b) \cdot \underbrace{p_{X, Y}(a, b)}
$$

$$
E\left(x^{2} y^{3}\right)
$$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{x y}(x, y) d x d y
$$

Brain Break

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs and Joint Range
- Marginal Distribution
- Polling

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Polling Procedure

for $i=1, \ldots, n)$:

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Roadmap: Bounding Error

Goal: Find the value of $n \underline{n}$ such that 98% of the time, the estimate \bar{X} is within 5% of the true p

Question: for what n is $P(|\bar{X}-p|>0.05) \leq 0.02$

$$
\leqslant 0.05) \geqslant 0.98
$$

Central Limit Theorem

With i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ where $\mathbb{E}\left[X_{i}\right]=p$ and $\operatorname{Var}\left(X_{i}\right)=p(1-p)$

As $n \rightarrow \infty$,

$$
\begin{array}{|l|c|}
\hline \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(p, \frac{p(1-p)}{n}\right) \\
\hline \mathcal{N} \\
\hline
\end{array}
$$

Roadmap: Bounding Error

Question: for what n is $P(|\bar{X}-p|>0.05) \leq 0.02$

Crucial observation: the more samples we take, the more likely \bar{X} is to be close to its expectation p since as $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)
$$

Recap I

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

1. Define question. For what n is $P(|\bar{X}-p|>0.05) \leq 0.02$
2. Apply CLT: By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=$ $p(1-p) / n$
3. Convert to a standard normal. Specifically, define $Z=$ $\frac{\bar{x}-\mu}{\sigma}=\frac{\bar{x}-p}{\sigma}$. Then, by the CLT $Z \rightarrow \mathcal{N}(0,1)$
4. Solve for n

Recap II

1. For what n is $P(|\bar{X}-p|>0.05) \leq 0.02$
2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$

3. Define $Z=\frac{\bar{X}-\mu}{\sigma}=\frac{\bar{X}-p}{\sigma}$. Then, by the CLT $Z \rightarrow \mathcal{N}(0,1)$

Recap II

1. For what n is $P(|\bar{X}-p|>0.05) \leq 0.02$

2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$
3. Define $Z=\frac{\bar{X}-\mu}{\sigma}=\frac{\bar{X}-p}{\sigma}$. Then, by the $\operatorname{CLT} Z \rightarrow \mathcal{N}(0,1)$

$$
P(|\bar{X}-p|>0.05)=P(|Z| \cdot \sigma>0.05)
$$

$$
\frac{1}{\sqrt{p(1-p)}} \text { is always } \geq 2
$$

Q: Why " \leq "?

$$
\begin{aligned}
& =P(|Z|>0.05 / \sigma)=P\left(|Z|>0.05 \frac{\sqrt{n}}{p(1-p)}\right. \\
& \leq P(|Z|>0.1 \sqrt{n})
\end{aligned}
$$

Recap III

1. Want $P(|\bar{X}-p|>0.05) \leq 0.02$

2. By CLT $\bar{X} \rightarrow \mathcal{N}\left(\mu, \sigma^{2}\right)$ where $\mu=p$ and $\sigma^{2}=p(1-p) / n$
3. Define $Z=\frac{\bar{X}-\mu}{\sigma}=\frac{\bar{X}-p}{\sigma}$. Then, by the $\operatorname{CLT} Z \rightarrow \mathcal{N}(0,1)$

$$
P(|\bar{X}-p|>0.05)=P(|Z| \cdot \sigma>0.05)
$$

$$
\frac{1}{\sqrt{p(1-p)}} \text { is always } \geq 2
$$

$$
\begin{array}{|l}
-P(|7|>\cap \cap 5 / \sigma)-P(|7|
\end{array} 0.05 \frac{\sqrt{n}}{\sqrt{p(1-p)})}
$$

Recap IV

Solve for n such that $P(|Z|>0.1 \sqrt{n}) \leq 0.02$ where $Z \rightarrow \mathcal{N}(0,1)$

- This assumes n is large enough that $Z \sim \mathcal{N}(0,1)$

Recap V

We want $P(|Z|>0.1 \sqrt{n}) \leq 0.02$ where $Z \rightarrow \mathcal{N}(0,1)$

- If we actually had $Z \sim \mathcal{N}(0,1)$ then enough to show that $P(Z>0.1 \sqrt{n}) \leq 0.01$ since $\mathcal{N}(0,1)$ is symmetric about 0
- Use $P(Z>z)=1-\Phi(z)$ where $\Phi(z)$ is the CDF of the Standard Normal Distribution
- Choose n so that $0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

Recap VI

Table of $\Phi(z)$ CDF of Standard Normal Distribution

Choose n so
$0.1 \sqrt{n} \geq z$ where

$$
\Phi(z) \geq 0.99
$$

From table $z=2.33$ works

Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679		0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	,	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

Recap VII

Choose n so
$0.1 \sqrt{n} \geq z$ where $\Phi(z) \geq 0.99$

From table $z=2.33$ works

- Since we only have $Z \rightarrow \mathcal{N}(0,1)$ there is some loss due to approximation error (which can be dealt with).

Summary: We found an approximate"confidence interval"

We are trying to estimate some parameter (e.g. p). We output an estimator \bar{X} such that $P(|\bar{X}-p|>\epsilon) \leq \delta$ for some (ϵ, δ).

- Often found using CLT, other approaches also important (especially when variance is unknown).
- We say that we are $(1-\delta){ }^{*} 100 \%$ confident that the result of our poll (\bar{X}) is an accurate estimate of p to within $\epsilon^{*} 100 \%$ percent.
- In our example, $(\epsilon=0.05, \delta=0.02)$.

Idealized Polling

So far, we have been discussing "idealized polling". Real life is normally not so nice :

Assumed we can sample people uniformly at random, not really possible in practice

- Not everyone responds
- Response rates might differ in different groups
- Will people respond truthfully?

Makes polling in real life much more complex than this idealized mode!!

