
CSE 312

Foundations of Computing II
17: Normal Distribution & Central Limit Theorem

Anonymous questions:  www.slido.com/6995617
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Review Continuous RVs
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Probability Density Function (PDF).
!:ℝ → ℝ s.t.
• ! % ≥ 0 for all % ∈ ℝ
• ∫!"

#"! % d% = 1

Cumulative Distribution Function (CDF).
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Density ≠ Probability ! &! ' = ) * ≤ '
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Review Continuous RVs
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Review Exponential Distribution

Definition. An exponential random variable ' with parameter ( ≥ 0 is 
follows the exponential density

!2 # = ,(-345 # ≥ 0
0 # < 0

CDF: For / ≥ 0,
02 / = 1 − -346

We write 7 ∼ Exp < and say 7 that follows the exponential distribution.
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Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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The Normal Distribution

6

Definition. A Gaussian (or normal) random variable with 
parameters 3 ∈ ℝ and 6 ≥ 0 has density

!2 # = =
>?@ -

3 !"# $
$%$

We say that * follows the Normal Distribution, and write * ∼ 3(4, 6"). 

Carl Friedrich 
Gauss

3(0, 1). No closed form expression for CDF…
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The Normal Distribution.              " ∼ 3(4, 5$)
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Definition. A Gaussian (or normal) random variable ' with 
parameters 3 ∈ ℝ and 6 ≥ 0 has density

!2 # = =
>?@ -

3 !"# $
$%$

Carl Friedrich 
Gauss

Fact. If " ∼ 3 4, 5$ , then 6["] = 4, and Var " = 5$

Proof of expectation is easy because density curve is symmetric around 4,
!! 4 − # = !!(4 + #), but proof for variance requires integration of 9#$!/"
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The Normal Distribution
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Standard normal distribution
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Standard (unit) normal = 7 0, 1

CDF. Φ : = ; < ≤ : = =
>? ∫3A

B -35$/>d# for < ∼ 7 0, 1

Note: Φ ? has no closed form – generally given via tables 
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Table of Standard Cumulative Normal Density 3 0, 1
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) @ ≤ 0.98 = Φ 0.98 ≈ 0.8365

) @ ≤ 1 = Φ 1.00 ≈ 0.84134
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The Standard Normal CDF

What is the probability that a standard Normal is within one 
standard deviation of its mean?

) @ ≤ 1 = Φ 1.00 ≈ 0.84

) −1 ≤ @ ≤ 1 =
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What happens when the mean/variance are not 0/1?

Turns out that by shifting and scaling, we can ``convert” any normal 
distribution into a standard normal (for purposes of calculation and 
lookup in the tables).

For a moment, suppose " is any r.v. with mean 4 and variance 
5$ and < = %" + '.  
What are the mean and variance of <?
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Mean of D:

Variance of D:
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Closure of normal distribution – Under Shifting and Scaling

Fact. If ' ∼ 7 3, 6> , then A = %' + & also normally distributed.

13

Mean of A: %3 + &

Variance of A: %>6>

In particular: ' − 3
6 ∼ 7 0, 1
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Closure of normal distribution – Under Shifting and Scaling

Fact. If ' ∼ 7 3, 6> , then A = %' + & ∼ 7 %3 + &, %>6>

14

Mean and variance immediate. The fact that  A is still normal is not obvious, 
but can show with algebra that the PDF of A = %' + & is still normal.

Useful for computing           02 : = ; ' ≤ : ' − 3
6 ∼ 7 0, 1
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Closure of normal distribution – Under Shifting and Scaling

Fact. If ' ∼ 7 3, 6> , then A = %' + & ∼ 7 %3 + &, %>6>

15

Mean and variance immediate. The fact that  D is still normal is not obvious, 
but can show with algebra that the PDF of D = F* + G is still normal.

Useful because

If ' ∼ 7 3, 6> , we compute 02 : = ; ' ≤ : as follows:

02 : = ; ' ≤ : = ; ' − 3
6 ≤ : − 3

6 = Φ(: − 36 )

win I



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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Key observation

17

If ! ∼ # $, &! , then  " #$% ∼ #(0, 1)

Therefore, 

+" , = . ! ≤ , = . ! − $
& ≤ , − $

& = Φ , − $
&

And can look up the value in the standard normal table.

standardizing

I



Example

Let ' ∼ 7 0.4, 4 = 2> .  
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; ' ≤ 1.2 = s
t
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Table of Standard Cumulative Normal Density
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Example

Let ' ∼ 7 0.4, 4 = 2> .  

20

; ' ≤ 1.2 = ; ' − 0.4
2 ≤ 1.2 − 0.4

2

= ; ' − 0.4
2 ≤ 0.4

∼ 3 0, 1

= Φ(0.4) ≈ 0.6554



Example

Let ' ∼ 7 3, 16 .  
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; 2 < ' < 5 =
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Table of Standard Cumulative Normal Density
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Example

Let ' ∼ 7 3, 16 .  

23

; 2 < ' < 5 = ; 2 − 3
4 < ' − 3

4 < 5 − 3
4

= ; −14 < < < 1
2

= Φ 1
2 − Φ −14

≈ 0.29017= Φ 1
2 − 1 − Φ 1
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Example – How Many Standard Deviations Away?
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Let ' ∼ 7 3, 6> .  

; ' − 3 < M6 = ; ' − 3
6 < M =

= ; −M < ' − 3
6 < M = Φ M − Φ(−M)

e.g. H = 1:   68%
H = 2:   95% 
H = 3:   99%
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Summary so far

• Normal distributions stay normal under shifting and scaling.

• To “standardize” a normal random variable ' ∼ 7 3, 6> , you 
subtract the mean and divide by the standard deviation, i.e.,

2 3D
@ ∼ 7(0, 1)

• This allows you to use the standard normal tables (showing Φ : =
; < ≤ : for < ∼ 7 0, 1 ) to do calculations for any normal 
distribution. (Also must use symmetry of normal distributions.)
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Closure of the normal -- under addition

Fact. If ' ∼ 7 32 , 62> , Y ∼ 7 3E , 6E> (both independent normal RV) 
then a' + &A + P ∼ 7 %32 + &3E + P, %>62> + &>6E>

Note: The special thing is that the sum of normal RVs is still a normal RV.
The values of the expectation and variance are not surprising. 

Why not surprising?
• Linearity of expectation (always true) 
• When * and D are independent, Var F* + GD = F"Var * + G"Var(D)



Normal Distribution Paranormal Distribution



Agenda

• Normal Distribution
• Practice with Normals
• Central Limit Theorem (CLT)
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Normal Distributions EVERYWHERE – why?

29

Neuron Activity

S&P 500 Returns after Elections

Vegetables

Examples from: 
https://galtonboard.com/probabilityexamplesinlife



Sums of i.i.d. RVs look normal!

30

'=, … , 'F i.i.d. with expectation 3 and variance 6>

i.i.d. = independent and identically distributed

Define RF = '= +⋯+ 'F

T[RF] =
Var(RF) =

T['=] + ⋯+ T['F] = Y3
Var '= +⋯+ Var 'F = Y6>

Empirical observation:
2& looks like a normal RV as 3 grows. 
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Example:  Sum of ? i.i.d. Exp(1) random variables
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Example: sum of
uniform r.v.s
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CLT : Sum of some
other weird i.i.d. r.v.s
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Suppose that what we see in nature results from combining 
(summing) many independent random observations…

34

Then distribution might look normal.
e.g. Height distribution resembles 
Gaussian.

R.A.Fisher (1918) observed that the 
height is likely the outcome of the 
sum of many independent random 
parameters, i.e., can written as

* = *& +⋯+ *'



Central Limit Theorem

35

'=, … , 'F i.i.d., each with expectation 3 and variance 6>

Define RF = '= +⋯+ 'F , AF =
RF − Y3
6 Y

Then distribution of  4& = '!#&$
% & converges to that of a 

normal distribution with mean 0 and variance 1 as 3 → ∞.
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Central Limit Theorem

36

'=, … , 'F i.i.d., each with expectation 3 and variance 6>

Define RF = '= +⋯+ 'F and

AF =
RF − Y3
6 Y

T[AF] =

Var(AF) =

1
6 Y T[RF] − Y3 = 1

6 Y Y3 − Y3 = 0

1
6>Y Var RF − Y3 = Var(RF)

6>Y = 6>Y
6>Y = 1



Central Limit Theorem

37

Theorem. (Central Limit Theorem) The CDF of AF converges to the 
CDF of the standard normal 7(0,1), i.e.,

limF→A; AF ≤ / = 1
2]^3A

6
-35$/>d#

AF =
'= +⋯+ 'F − Y3

6 YO
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Central Limit Theorem

38

Theorem. (Central Limit Theorem) The CDF of AF converges to the 
CDF of the standard normal 7(0,1), i.e.,

limF→A; AF ≤ / = 1
2]^3A

6
-35$/>d#

AF =
'= +⋯+ 'F − Y3

6 Y

Also stated as:
• lim

F→A
AF →7(0,1)

• limF→A
=
F∑GH=

F 'G →7 3, @
$

F for 3 = T['G] and 6> = Var 'G
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CLT application

• Transmitting a signal. 100 sources independently add noise to signal, 
each Unif(-1,1). If |total noise| > 10, signal is corrupted.

• Use the CLT to estimate the approximate probability that the signal is
not corrupted.
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Agenda

• Polling
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Magic Mushrooms

In Fall 2020, Oregonians voted on whether to legalize the 
therapeutic use of “magic mushrooms”.

Poll to determine the fraction ! of the population expected to vote 
in favor.
• Call up a random sample of " people to ask their opinion
• Report the empirical fraction

Questions
• Is this a good estimate?
• How to choose "?

42



Polling Accuracy

Often see claims that say

“Our poll found 80% support. This poll is accurate to within 
5% with 98% probability*”

Will unpack what this and how they sample enough people to 
know this is true.

43

* When it is 95% this is sometimes written as “19 times out of 20”



Formalizing Polls

44

Polling Procedure
for a = 1, … , Y :

1. Pick uniformly random person to call (prob: 1/c)
2. Ask them how they will vote

'G = ,1, voting in favor
0, otherwise

Report our estimate of n: o' = =
F∑GH=

F 'G

Population size M, true fraction of voting in favor N, sample size O.
Problem: We don’t know N, want to estimate it



Formalizing Polls
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Polling Procedure
for a = 1, … , Y :

1. Pick uniformly random person to call (prob: 1/c)
2. Ask them how they will vote

'G = ,1, voting in favor
0, otherwise

Report our estimate of n: o' = =
F∑GH=

F 'G

Population size M, true fraction of 
voting in favor N, sample size O.

Problem: We don’t know N

Poll: www.slido.com/6995617 
Type T[*(] Var(*()

a. Bernoulli     N N(1 − N)
b. Bernoulli        N N"
c. Geometric     N &#)

)!
d. Binomial        nN ON(1 − N)

What type of r.v. is "%?



Random Variables

What type of r.v. is "%?

What about  C" = &
'∑%(&

' "%?

46

Type T[*(] Var(*()
a. Bernoulli     N N(1 − N)
b. Bernoulli        N N"
c. Geometric     N &#)

)!
d. Binomial        nN ON(1 − N)

Poll: www.slido.com/6995617
T[ W*] Var( W*)

a. ON ON(1 − N)
b. N N(1 − N)
c. N N 1 − N /O
d. N/O N(1 − N)/O



Roadmap: Bounding Error

Goal: Find the value of ? such that 98% of the time, the 
estimate C" is within 5% of the true E

47

10 N N + 0.05N − 0.05

Get good estimate if ' lands in this region



Roadmap: Bounding Error

Goal: Find the value of ? such that 98% of the time, the 
estimate C" is within 5% of the true E

48

10 N N + 0.05N − 0.05

Get good estimate if ' lands in this region

'
Want ; ' − n > 0.05 ≤ 0.02



Central Limit Theorem

With i.i.d random variables #&, #$, … , #' where
&[#%] = * and Var #% = .$

As " → ∞,
#& + #$ +⋯#' − "*

. " → 4(0, 1)
Restated: As " → ∞,

# = 1
"9%(&

'
#% → 4 *, .

$

"
49

Poll: In the limit * is…?
a. 3(0, 1)
b. 3 N, N(1 − N)
c. 3 N, N(1 − N)/O
d. I don’t know

www.slido.com/6995617



Roadmap: Bounding Error

50

10 N N + 0.05N − 0.05'
Want ; ' − n > 0.05 ≤ 0.02


