CSE 312
Foundations of Computing Il

Lecture 16: Midterm review

Anonymous questions: www.slido.com/4694375



Midterm Monday at 9:30am

» Sections AA, AB, AC, AD = Kane 110
« Sections AE, AF, AG, AH = ARC 147
* (Can bring one page cheat sheet — must be physical paper.

* Bring a laptop with you.
* Make sure your laptop is fully charged!!

* During exam, you can have two windows open

— One open to canvas
— One open to wolframalpha

* Everything else must be put away.
* Can submit one time only!



Fropanlity & DUATISTICS WITIL APPILICATIONS t0 LOoInputing
Key Definitions and Theorems
1 Combinatorial Theory
1.1 So You Think You Can Count?

The Sum Rule: If an experiment can either end up being one of N outcomes, or one of M outcomes (where there is no
overlap), then the total number of possible outcomes is: N + M.

The Product Rule: If an experiment has N7 outcomes for the first stage, No outcomes for the second stage, ..., and N,
outcomes for the m™ stage, then the total number of outcomes of the experiment is Ny x Ny - ---- N,,, = H:Zl N;.

Permutation: The number of orderings of N distinct objectsis N!=N-(N —-1)- (N —-2)-...3-2-1.

Complementary Counting: Let U be a (finite) universal set, and S a subset of interest. Then, | S |=|U | — |U\ S |.

1.2 More Counting

k-Permutations: If we want to pick (order matters) only k out of n distinct objects, the number of ways to do so is:

P(n,k):n~(n—1)~(n—2)~...-(n—/€+1):(nfi!k)!

k-Combinations/Binomial Coefficients: If we want to choose (order doesn’t matter) only &k out of n distinct objects,
the number of ways to do so is:

_(n\ _ P(n,k) n!
Cln. k) = (k) TR K-k

Multinomial Coefficients: If we have k distinct types of objects (n total), with n; of the first type, ns of the second, ...,
and ny of the k-th, then the number of arrangements possible is

< n > y n!
N1, M2, ey TV nylng!.. .ny! k__‘ AUJ

<n Jrk(fI 1)) _ <n + (s - 1))

e ——E I

1S

1.3 No More Counting Please

Binomial Theorem: Let z,y € R and n € N a positive integer. Then: (z +y)" = >, _ (7)z y" "

Principle of Inclusion-Exclusion (PIE):

2 events: |[AUB| = |A|+ |B|—|AN B|

3events: |[AUBUC|=|A|+|B|+|C|-|ANB|—|ANC|—|BNC|+|ANnBNC|
k events: singles - doubles + triples - quads + ...

Pigeonhole Principle: If there are n pigeons we want to put into &k holes (where n > k), then at least one pigeonhole must
contain at least 2 (or to be precise, [n/k]) pigeons.

Combinatorial Proofs: To prove two quantities are equal, you can come up with a combinatorial situation, and show that
both in fact count the same thing, and hence must be equal.

2 Discrete Probability

2.1 Discrete Probability

Key Probability Definitions: The sample space is the set € of all possible outcomes of an experiment. An event is
any subset E C . Events E and F are mutually exclusive if E N F = ().

Axioms of Probability & Consequences:

1. (Axiom: Nonnegativity) For any event E, P (E) > 0.
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2. (Axiom: Normalization) P (Q) = 1.

3. (Axiom: Countable Additivity) If E and F are mutually exclusive, then P(EU F) = P(E) + P (F).
1. (Corollary: Complementation) P (E€) =1—P(E)

2. (Corollary: Monotonicity) If E C F, then P (F) < P (F)

3. (Corollary: Inclusion-Exclusion) P(EUF)=P(E)+P(F)-P(ENF)

Equally Likely Outcomes: If Q) is a sample space such that each of the unique outcome elements in €2 are equally likely,

then for any event £ C Q: P(E) = |E|/|Q|. - \
2.2 Cozlditional Probability Ywefl P("’) - \\L\
%Conditional Probability: Pl B)) o P(N\%): « R\&)?(B)

P(B | A)P

T P(B)

~ A
Partition: Non-empty events Fy, ..., E, partition the sample space 2 if they are both:
e (Exhaustive) Fy UE,U---UE, =J;_, E; = Q (they cover the entire sample space).
e (Pairwise Mutually Exclusive) For all i # j, E; N Ej = 0 ( none of them overlap)

Note that for any event E, E and E€ always form a partition of Q.
Law of Total Probability (LTP): If events Ei,..., E, partition €, then for any event F:

Bayes Theorem:

n n

P(F)=Y P(FNE.) =Y P(F|E)P(E)

Bayes Theorem with LTP: Let events Fy, ..., E, partition the sample space (2, and let F' be another event. Then:

P(F | E1)P(E;)
i P(F | E)P(E))

P(E|F)=

2.3 Independence

Chain Rule: Let Aq,..., A, be events with nonzero probabilities. Then: @ N"\‘ /\ﬁ \V\&fl’&k\\ ’

P(Ay,...,An) =P(41)P(Ay | A1) P (A3 | A1A2)---P(A, | A1,..., An_1)

Independence: A and B are independent if any of the following equivalent statements hold:

1. P(A| B) =P(4)

2. P(B|A) =P(B)

3. P(A, B) =P(A)P(B)

Mutual'Independence: We say n events A, As, ..., A, are (mutually) independent if, for any subset I C [n] =
{1,2,...,n}, we have

This equation is actually representing 2™ equations si ere are 2" subsets of [n].

Conditional Independence: A and B are conditionally independent given an event C if any of the following
equivalent statements hold:

1. P(A| B,C) =P(A]| 0)



2. P(B|A,C)=P(B|C)
3. P(A,B|C)=P(A|C)P(B|C)

3 Discrete Random Variables

3.1 Discrete Random Variables Basics

Random Variable (RV): A random variable (RV) X is a numeric function of the sutcome X :  — R. The set of possible
Values X can take on is its range/support, denoted Qx. -

If Qx is ﬁmte or countable infinite (typically integers or a subset), X is a discrete RV. Else if Qx is uncountably large (the
—
size of real numbers), X is a continuous RV.

Probability Mass Function (PMF): For a discrete RV X, assigns probabilities to values in its range. That is px : Qx —
[0,1] where: px (k) =P (X = k).

Expectation: The expectation of a discrete RV X is: E[X] =}, o k- px (k).

3.2 More on Expectation

Linearity of Expectation (LoE): For any random variables X,Y (possibly dependent) (
%EL*

E[aX +bY 4+ ¢] =aE[X] +bE[Y] + ¢

Law of the Unconscious Statistician (LOTUS): For a discrete RV X and function g, E [g(X)] = eay 9(b) - px (D).

3.3 Variance

Linearity of Expectation with Indicators: If asked only about the expectation of a RV X which is some sort of “count”
(and not its PMF), then you may be able to write X as the sum of possibly dependent indicator RVs X, ..., X,,, and apply
LoE, where for an indicator RV X;, E[X;] =1-P(X;=1)4+0-P(X; =0) =P (X; =1).

A CEE—
Variance: Var(X)=E[(X - E[X])?] =E [X?] - E[X]*.

Standard Deviation (SD): ox = 4/ Var(X). “ v&rf‘\h(
P ty of Vari : V X+0b X). . -
roperty of Variance arg —i;_) @ ar (X) d © ﬁ' l‘. W e‘ i - Ia

3.4 Zoo of Discrete Random Variables Part 1

Independence: Random variables X and Y are independent, denoted X J_ Y if for all © € Qx and all y € Qy:

P(X=2nNY =y)=PX =2x) -P(Y =y). P X =x '\,,3\‘\ .

Independent and Identically Distributed (iid): We say Xi,...,X,, are sald to bé independent and identically
distributed (iid) if all the X;’s are independent of each other, and have the same distribution (PMF for discrete RVs, or
CDF for continuous RVs).

Variance Adds for Independent RVsf If X | Y, then Var (X +Y) = Var (X) + Var (V). E(X\/ :E(R2HY

Bernoulli Process: A Bernoulli process rameter p is a sequence of independent coin flips X7, Xo, X3,... w
P (head) = p. If flip 4 is heads, then we encode X; = 1; otherwise, X; = 0.

Bernoullidndicator Random Variable: X ~ Bernoulli(p) (Ber(p) for short) iff X has

ere

E[X] = p and Var(X) = p(1 — p). An exam oulli/indicator RV is one flip of a coin with P (head) = p. By a
clever trick, we can write

Binomial Random Vari ~ Binomial(n, p) (Bin(n,p) for short has PMF

n

px () = (1)t A=) b= 01,0

E[X] = np and Var(X) = np(1 — p). X is the sum of n iid Ber(p) random variables. An example Binomial RV is the



0,with np = A, then Bin(n,p) — Poi(A\). If Xi,...,X, are independent Binomial RV’s, where X; ~ Bin(V;,p), then
<X;+...+ X, ~Bin(Ny + ...+ Np,p).

3.5 f Discrete Random Variables Part II
iable (Discrete): X ~ Uniform(a,b) (Unif(a,b) for short), f

Uniform Random integers a < b, iff X has PMF:

() =—

——, keQx = 1
ey €Qx ={a,a+

E[X] = “TH’ and Var (X) = W. This rep a, b to be equally likely. For example, a single roll
of a fair die is Unif(1, 6).

E[X] = % and Var (X) = 1p_2p. An example of a Gegfetric RV is the number o
the first head, where P (head) = p.

Negative Binomial Random Variable:

E[X] = £ and Var (X) = sgomial RV is
the number of independe .
Negative Binomial RV &, where X; ~ NegBin(r;,p), then X = X3 + ...+ X,, ~ NegBin(r1 + ...+ 7, p).

3.6 Zoo of Piscrete Random Variables Part III
ndom Variable: X ~ Poisson(A) (Poi(A) for short) iff X has PMF:

_ N

pX(k)—e R k‘EQX:{O,l,Q,...}

during a particular minute,
’s, where X; ~ Poi(}\;), then

Var(X) = A. An example of a Poisson RV is the number of people bor
rage birth rate per minute. If X;,..., X, are independent Poisson
0i(A1 + ... + Ap).

Variable: X ~ HyperGeometric(N, K,n) (HypGeq,

where A\ is the
X=X1+...+X,

Hypergeometric Ran , K, n) for short) iff X has PMF:

E[X] = n¥ and Var(X) = n% This re umber of successes drawn, when n items are drawn from
a bag with N items (K of which are successes, and N —

then this scenario would be represented as Bin (n, %)

ures) without replacement. If we did this with replacement,

4 Continuous Random Variab

4.1 Continuous Random Varia

Probability Density Function (PD#'): The probability density function (PD
fx : R — R, such that the followigg properties hold:

f a continuous RV X is the function

o fx(z)>0forall ze

o [T fx(t)dt=

(Aicnvntn An Aann +irrrmran N icn Aafunnd 44 ha tha faatine Tl oD D bl T (4N D/ V —~ £\ T V ic o anmtimaiania DV crn harn.



E(\(-\) = 63 o3>

More practice with linearity of

A DNA sequence can be thought of as a stri
ATG,C

Suppose that the DNA sequence is random: the base in each position is selected
independently of other positions, and for each particular position, one of the 4

bases is selected such that the letters G and C occur with probability 0.2 each and A
and T occur with probability 0.3 each.

In a sequence of length n, what is the expected number of
of the sequence AATGTC?

ade up of 4 bases:
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Example: Returning Homeworks

* Class with n students, randomly hand back homeworks.  All
permutations equally likely.

* Let X be the number of students who get their own HW
What is E[X]? Use linearity of expectation!

Decompose: What is X;? o
/ X; = 1 iff i*" student gets own HW backJ

Pr(w) | w X(w)

1/6 |1,2,3| 3 LOE: | X =X,

1/6 [1,3,2 1 So _ElX] = E[X;] + --- + E[X,
1/6 |2,1,3 1 N

1/6 |2,3,1 0 Conquer:@(i] =

1/6 |3,1,2 0 1

1/6 [3,2,1 1 Therefore, n-—= 1




Example: Returning Homeworks

* (lass with n students, randomly hand back homeworks.  All permutations

equally likely. : A
ATy IR | \2{)&) =N
* Let X be the number of students who get their own HW
What is E[X?]? b x=1 iffm

R N 2 3 — gets own HW back
X ;\9  —







