CSE 312 Foundations of Computing II

Lecture 16: Midterm review

Anonymous questions: www.slido.com/4694375

Midterm Monday at 9:30am

- Sections AA, AB, AC, AD → Kane 110
- Sections AE, AF, AG, AH → ARC 147
- Can bring one page cheat sheet must be physical paper.
- Bring a laptop with you.
- Make sure your laptop is fully charged!!
- During exam, you can have two windows open
 - One open to canvas
 - One open to wolframalpha
- Everything else must be put away.
- Can submit one time only!

Frobability & Statistics with Applications to Computing Key Definitions and Theorems

1 Combinatorial Theory

1.1 So You Think You Can Count?

The Sum Rule: If an experiment can either end up being one of N outcomes, or one of M outcomes (where there is no overlap), then the total number of possible outcomes is: N + M.

<u>The Product Rule</u>: If an experiment has N_1 outcomes for the first stage, N_2 outcomes for the second stage, ..., and N_m outcomes for the m^{th} stage, then the total number of outcomes of the experiment is $N_1 \times N_2 \cdots N_m = \prod_{i=1}^m N_i$.

<u>Permutation</u>: The number of orderings of N distinct objects is $N! = N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$.

Complementary Counting: Let \mathcal{U} be a (finite) universal set, and S a subset of interest. Then, $|S| = |\mathcal{U}| - |\mathcal{U} \setminus S|$.

1.2 More Counting

<u>k-Permutations</u>: If we want to pick (order matters) only k out of n distinct objects, the number of ways to do so is:

$$P(n,k) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

k-Combinations/Binomial Coefficients: If we want to choose (order doesn't matter) only k out of n distinct objects, the number of ways to do so is:

$$C(n,k) = \binom{n}{k} = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

Multinomial Coefficients: If we have k distinct types of objects (n total), with n_1 of the first type, n_2 of the second, ..., and n_k of the k-th, then the number of arrangements possible is

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k}$$

k-1 dw

Stars and Bars/Divider Method: The number of ways to distribute n indistinguishable balls into k distinguishable bins

$$\binom{n+(k-1)}{k-1} = \binom{n+(k-1)}{n}$$

1.3 No More Counting Please

<u>Binomial Theorem</u>: Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.

Principle of Inclusion-Exclusion (PIE):

2 events: $|A \cup B| = |A| + |B| - |A \cap B|$

3 events: $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$ k events: singles - doubles + triples - quads + ...

Pigeonhole Principle: If there are *n* pigeons we want to put into *k* holes (where n > k), then at least one pigeonhole must contain at least 2 (or to be precise, $\lceil n/k \rceil$) pigeons.

<u>Combinatorial Proofs</u>: To prove two quantities are equal, you can come up with a combinatorial situation, and show that both in fact count the same thing, and hence must be equal.

2 Discrete Probability

2.1 Discrete Probability

Key Probability Definitions: The sample space is the set Ω of all possible outcomes of an experiment. An event is any subset $E \subseteq \Omega$. Events E and F are mutually exclusive if $E \cap F = \emptyset$.

Axioms of Probability & Consequences:

1. (Axiom: Nonnegativity) For any event $E, \mathbb{P}(E) \ge 0$.

counting set of abjects chère 1 chose 2 choire le guer orteane car you uniquely reconstruct what choice was made at each step?

2. (Axiom: Normalization) $\mathbb{P}(\Omega) = 1$.

3. (Axiom: Countable Additivity) If E and F are mutually exclusive, then $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)$.

- 1. (Corollary: Complementation) $\mathbb{P}(E^{C}) = 1 \mathbb{P}(E)$
- 2. (Corollary: Monotonicity) If $E \subseteq F$, then $\mathbb{P}(E) \leq \mathbb{P}(F)$
- 3. (Corollary: Inclusion-Exclusion) $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) \mathbb{P}(E \cap F)$

Equally Likely Outcomes: If Ω is a sample space such that each of the unique outcome elements in Ω are equally likely, then for any event $E \subseteq \Omega$: $\mathbb{P}(E) = |E|/|\Omega|$.

2.2**Conditional Probability**

$\mathbb{P}\left(A\cap B\right)$ Conditional Probability: $\mathbb{P}(A \mid B)$ $\mathbb{P}(B)$ **Bayes Theorem:** $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(A)}$

<u>Partition</u>: Non-empty events E_1, \ldots, E_n **partition** the sample space Ω if they are both:

- (Exhaustive) $E_1 \cup E_2 \cup \cdots \cup E_n = \bigcup_{i=1}^n E_i = \Omega$ (they cover the entire sample space).
- (Pairwise Mutually Exclusive) For all $i \neq j, E_i \cap E_j = \emptyset$ (none of them overlap)

Note that for any event E, E and E^C always form a partition of Ω .

Law of Total Probability (LTP): If events E_1, \ldots, E_n partition Ω , then for any event F:

$$\mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}(F \cap E_n) = \sum_{i=1}^{n} \mathbb{P}(F \mid E_i) \mathbb{P}(E_i)$$

Bayes Theorem with LTP: Let events E_1, \ldots, E_n partition the sample space Ω , and let F be another event. Then:

$$\mathbb{P}(E_1 \mid F) = \frac{\mathbb{P}(F \mid E_1) \mathbb{P}(E_1)}{\sum_{i=1}^{n} \mathbb{P}(F \mid E_i) \mathbb{P}(E_i)}$$

2.3Independence

does not reg independence **<u>Chain Rule:</u>** Let A_1, \ldots, A_n be events with nonzero probabilities. Then:

$$\mathbb{P}(A_1,\ldots,A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1A_2)\cdots\mathbb{P}(A_n \mid A_1,\ldots,A_n)$$

Independence: A and B are **independent** if any of the following equivalent statements hold:

1. $\mathbb{P}(A \mid B) = \mathbb{P}(A)$ 2. $\mathbb{P}(B \mid A) = \mathbb{P}(B)$ 3. $\mathbb{P}(A, B) = \mathbb{P}(A) \mathbb{P}(B)$

<u>Mutual Independence</u>: We say n events A_1, A_2, \ldots, A_n are (**mutually**) independent if, for any subset $I \subseteq [n] =$ $\{1, 2, ..., n\}$, we have

$$\mathbb{P}\left(\left(\bigcap_{i\in I}A_{i}\right)=\prod_{i\in I}\mathbb{P}\left(A_{i}\right)\right)$$

This equation is actually representing 2^n equations since there are 2^n subsets of [n].

Conditional Independence: A and B are conditionally independent given an event C if any of the following equivalent statements hold:

1. $\mathbb{P}(A \mid B, C) = \mathbb{P}(A \mid C)$

2. $\mathbb{P}(B \mid A, C) = \mathbb{P}(B \mid C)$ 3. $\mathbb{P}(A, B \mid C) = \mathbb{P}(A \mid C) \mathbb{P}(B \mid C)$ 3 **Discrete Random Variables** 3.1**Discrete Random Variables Basics Random Variable (RV):** A random variable (RV) X is a numeric function of the outcome $X : \Omega \to \mathbb{R}$. The set of possible values X can take on is its range/support, denoted Ω_X . If Ω_X is finite or countable infinite (typically integers or a subset), X is a **discrete RV**. Else if Ω_X is uncountably large (the size of real numbers), X is a **continuous RV**. **Probability Mass Function (PMF):** For a discrete RV X, assigns probabilities to values in its range. That is $p_X : \Omega_X \to \Omega_X$ [0,1] where: $p_X(k) = \mathbb{P}(X=k)$. **Expectation:** The expectation of a discrete RV X is: $\mathbb{E}[X] = \sum_{k \in \Omega_X} k \cdot p_X(k)$. Linearity of Expectation (LoE): For any random variables X, Y (possibly dependent): 3.2More on Expectation $\mathbb{E}\left[aX + bY + c\right] = a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right] + c$ Law of the Unconscious Statistician (LOTUS): For a discrete RV X and function $g, \mathbb{E}[g(X)] = \sum_{b \in \Omega_X} g(b) \cdot p_X(b)$. 3.3 Variance **Linearity of Expectation with Indicators:** If asked only about the expectation of a RV X which is some sort of "count" (and not its PMF), then you may be able to write X as the sum of possibly dependent indicator RVs X_1, \ldots, X_n , and apply LoE, where for an indicator RV X_i , $\mathbb{E}[X_i] = 1 \cdot \mathbb{P}(X_i = 1) + 0 \cdot \mathbb{P}(X_i = 0) = \mathbb{P}(X_i = 1)$. <u>Variance</u>: $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \mathbb{E}\left[X^2 \right] - \mathbb{E}[X]^2.$ Standard Deviation (SD): $\sigma_X = \sqrt{Var(X)}$. doen NOT hold in an **Property of Variance:** $Var(aX + b) \neq a^2 Var(X)$. 3.4Zoo of Discrete Random Variables Part I **Independence:** Random variables X and Y are **independent**, denoted $X \perp Y$, if for all $x \in \Omega_X$ and all $y \in \Omega_Y$: $\mathbb{P}(X = x \cap Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$. Independent and Identically Distributed (iid): We say X_1, \ldots, X_n are said to be independent and identically **distributed** (iid) if all the X_i 's are independent of each other, and have the same distribution (PMF for discrete RVs, or CDF for continuous RVs). Variance Adds for Independent RVs If $X \perp Y$, then Var(X + Y) = Var(X) + Var(Y). **Bernoulli Process:** A **Bernoulli process** with parameter p is a sequence of independent coin flips X_1, X_2, X_3, \dots where $\mathbb{P}(\text{head}) = p$. If flip *i* is heads, then we encode $X_i = 1$; otherwise, $X_i = 0$. **Bernoulli/Indicator Random Variable:** $X \sim \text{Bernoulli}(p)$ (Ber(p) for short) iff X has PMF: $p_X(k) = \begin{cases} p, & k = 1\\ 1-p, & k = 0 \end{cases}$ $\mathbb{E}[X] = p$ and Var(X) = p(1-p). An example of a Bernoulli/indicator RV is one flip of a coin with $\mathbb{P}(head) = p$. By a clever trick, we can write $p_X(k) = p^k (1-p)^{1-k}, \quad k = 0, 1$ **<u>Binomial Random Variabl.</u>** $X \sim \text{Binomial}(n, p)$ (Bin(n, p) for short) if X has PMF $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \Omega_X = \{0, 1, \dots, n\}$ $\mathbb{E}[X] = np$ and Var(X) = np(1-p). X is the sum of n iid Ber(p) random variables. An example of a Binomial RV is the

0, with $np = \lambda$, then $Bin(n,p) \to Poi(\lambda)$. If X_1, \ldots, X_n are independent Binomial RV's, where $X_i \simeq Bin(N_i,p)$, then $X = X_1 + \ldots + X_n \sim \operatorname{Bin}(N_1 + \ldots + N_n, p).$

Zoo of Discrete Random Variables Part II 3.5

Uniform Random Variable (Discrete): $X \sim \text{Uniform}(a, b)$ (Unif(a, b) for short), for integers $a \leq b$, iff X has PMF:

$$p_X(k) = \frac{1}{b-a+1}, \ k \in \Omega_X = \{a, a+1, \dots, b\}$$

 $\mathbb{E}[X] = \frac{a+b}{2}$ and $\operatorname{Var}(X) = \frac{(b-a)(b-a+2)}{12}$. This represents each *integer* in [a, b] to be equally likely. For example, a single roll of a fair die is Unif(1, 6).

Geometric Random Variable: $X \sim \text{Geometric}(p)$ (Geo(p) for short) iff X has PMF:

$$p_X(k) = (1-p)^{k-1} p, \ k \in \Omega_X = \{1, 2, 3, \ldots\}$$

 $\mathbb{E}[X] = \frac{1}{p}$ and $\operatorname{Var}(X) = \frac{1-p}{p^2}$. An example of a Geometric RV is the number of n dependent coin flips up to and including the first head, where $\mathbb{P}(\text{head}) = p$.

Negative Binomial Random Variable: $X \sim \text{NegativeBinomial}(r, p)$ (NegBin(r, p) for short) iff X has PMF:

$$p_X(k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, \quad k \in \Omega_X = \{r, r+1, r+2, \ldots\}$$

 $\mathbb{E}[X] = \frac{r}{p}$ and $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$. X is the sum of r iid $\operatorname{Geo}(p)$ random variables. An example of a Negative Binomial RV is the number of independent coin flips up to and including the r-th head, where $\mathbb{P}(\operatorname{head}) = p$. If X_1, \ldots, X_n are independent Negative Binomial RV's, where $X_i \sim \text{NegBin}(r_i, p)$, then $X = X_1 + \ldots + X_n \sim \text{NegBin}(r_1 + \ldots + r_n, p)$.

3.6 Zoo of Discrete Random Variables Part III

Poisson Random Variable: $X \sim \text{Poisson}(\lambda)$ (Poi (λ) for short) iff X has PMF:

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \Omega_X = \{0, 1, 2, \ldots\}$$

 $\mathbb{E}[X] = \lambda$ and $\operatorname{Var}(X) = \lambda$. An example of a Poisson RV is the number of people born during a particular minute, where λ is the average birth rate per minute. If X_1, \ldots, X_n are independent Poisson RV's, where $X_i \sim \text{Poi}(\lambda_i)$, then $X = X_1 + \ldots + X_n \sim \operatorname{Poi}(\lambda_1 + \ldots + \lambda_n).$

Hypergeometric Random Variable: $X \sim$ HyperGeometric(N, K, n) (HypGeo(N, K, n) for short) iff X has PMF:

$$p_X(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \quad k \in \Omega_X = \{\max\{0, n+K-N\}, \dots, \min\{K, n\}\}$$

 $\mathbb{E}[X] = n\frac{K}{N}$ and $\operatorname{Var}(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$. This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and N - K failures) without replacement. If we did this with replacement, then this scenario would be represented as $Bin(n, \frac{K}{N})$.

4 Continuous Random Variables

Continuous Random Variables Basics 4.1

Probability Density Function (PDF): The probability density function (PDF) of a continuous RV X is the function $f_X : \mathbb{R} \to \mathbb{R}$, such that the following properties hold:

- $f_X(z) \ge 0$ for all $z \in$
- $\int_{-\infty}^{\infty} f_X(t) dt = 1$ $\mathbb{P}(a \le X \le b) = \int_a^b f_X(w) dw$

Cumulative Distribution Function (CDF): The cumulative distribution function (CDF) of ANY random variable (discrete or continuous) is defined to be the function $F_{--} = \mathbb{D}$ with $F_{--}(t) = \mathbb{D}(Y < t)$. If Y is a continuous RV we have

 $F(X;) = 0.3' 0.2^{2}$

More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases:

A, T, G, C

Suppose that the DNA sequence is random: the base in each position is selected independently of other positions, and for each particular position, one of the 4 bases is selected such that the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each.

GGGCG

In a sequence of length n, what is the expected number of occurrences of the sequence AATGTC?

()erm 50 AATGA n-5 1+5 n-1 Sr. Kg. Xgt E(X)= E(X,)+E(X)+-+E(X--5) $= (n-5) 0.3^{4} 0.3^{2}$

Example: Returning Homeworks

- Class with *n* students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

What is $\mathbb{E}[X]$? Use linearity of expectation!

<u>Decompose</u>: What is *X_i*?

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

$$X_{i} = 1 \text{ iff } i^{th} \text{ student gets own HW back}$$

$$LOE: \qquad X = X_{1} + X_{2} + \dots + X_{n}$$
So
$$\mathbb{E}[X] = \mathbb{E}[X_{1}] + \dots + \mathbb{E}[X_{n}]$$

$$Conquer: \qquad \mathbb{E}[X_{i}] = \frac{1}{n}$$

$$Therefore, \mathbb{E}[X] = n \cdot \frac{1}{n} = 1$$

6

Example: Returning Homeworks

Class with *n* students, randomly hand back homeworks. All permutations • equally likely. E(X: Let X be the number of students who get their own HW • What is $\mathbb{E}[X^2]$? $X_i = 1$ iff i^{th} student gets own HW back $X = X_1 + X_2 + \dots + X_n$ K--0 E $+X_n$ (X, t)7

ו ב ו

