CE 312
Foundations of Computing II
Lecture 15: Expectation \& Variance of Continuous RVs Exponential and Normal Distributions

Anonymous questions
slido.com/4694375

Review - Continuous RVs

rate at which prebis accumeth

Probability Density Function (PDF).
${ }_{\dot{X}}: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=1$

Cumulative Distribution Function (CDF).

$$
\rightarrow F(y)=\int_{-\infty}^{y} f(x) \mathrm{d} x=\mathbf{P}(\mathbf{X} \leq y)
$$

Density \neq Probability !

$$
\begin{aligned}
P(X \in[a, b]) & =\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
& =F_{X}(b)-F_{X}(a)
\end{aligned}
$$

$$
F_{X}(y)=P(X \leq y)
$$

$$
P(a \leq X \leq b)=P(a<X<b)
$$

Review: Uniform Distribution

$X \sim \operatorname{Unif}(a, b)$
We also say that X follows the uniform distribution / is

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Review: From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$\begin{array}{r} F_{X}(x)=\sum_{t \leq x} p_{X}(t) \\ \mathbf{P}(\mathbf{X} \leq x) \end{array}$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c \quad \square \quad \begin{aligned} & \text { Proofs follow same } \\ & \text { ideas as discrete case }\end{aligned}$ Iinearity of expectatu

Expectation of a Continuous RV

Definition. The expected value of a continuous RV X is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
Proofs follow same ideas as discrete case

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot \underbrace{(x-\mathbb{E}[X])^{2}}_{g(x)} \mathrm{d} x=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Agenda

- Uniform Distribution -
- Exponential Distribution
- Normal Distribution

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

Definition.

$0 \leq x \leq 1$
0
$\sigma . \omega$

Expectation of a Continuous RV

Example. T ~ Unif(0,1)

Definition.

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x d x
$$

$$
\mathbb{E}[T]=\underbrace{\frac{1}{2} 1^{2}=\frac{1}{2}}
$$

Area of triangle

Uniform Density - Expectation

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left(\frac{1}{\frac{1}{b-a}}\right)^{x \in[a, b]} \text { else }
$$

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
=\frac{1}{b-a} \int_{a}^{b}\left(x \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right)\right.
$$

$$
\begin{aligned}
& x \\
& x^{2}
\end{aligned} \begin{aligned}
& \frac{x^{2}}{2} \\
& \frac{x^{3}}{3}
\end{aligned}
$$

$$
=\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
$$

$$
\operatorname{Va}(x)=E\left(x^{2}\right)-(E(x))^{2}
$$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{a}^{b} x^{2} \cdot \frac{1}{(b-a)} d x \\
&=\frac{1}{b-a} \cdot \underbrace{\int_{a}^{2} x^{2} d x}_{\left.\frac{x^{3}}{3}\right|_{a} ^{b}}
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{c}
\frac{1}{b-a} \underset{0}{\sqrt{x \in[a, b]}} \underbrace{\sqrt{x}}_{\text {else }})
\end{array}\right.
$$

Uniform Density - Variance

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{array}{r}
=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)} \\
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
\end{array}
$$

Uniform Density - Variance
$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12} \\
& =\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Uniform Distribution Summary
$X \sim \operatorname{Unif}(a, b)$

$$
\begin{array}{r}
F_{X}(y)=\left\{\begin{array}{cc}
\frac{0}{x-a} & x \\
1 & x
\end{array}\right. \\
\mathbb{E}[X]=\frac{a+b}{2}
\end{array}
$$

$$
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

Exponential Density

Assume expected \# of occurrences of an event per unit of time is λ (independently)

- Cars going through intersection - Rate of radioactive decay
- Number of lightning strikes
- Requests to web server
- Patients admitted to ER

Numbers of occurrences of event in one unit of time: Poisson distribution

$$
P(\underline{W}=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

(Discrete)

How long to wait until next event? Exponential density!
Let's define it and then derive it!

Exponential Density - Warmup

$W \sim \operatorname{Poi}(\lambda) \Rightarrow P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}$

Assume expected \# of occurrences of an event per unit of time is λ (independently)

What is $\mathbb{E}[Z]$ where $Z=\#$ occurrences of event per t units of time?

Exponential Density - Warmup

$W \sim \operatorname{Poi}(\lambda) \Rightarrow P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}$

Assume expected \# of occurrences of an event per unit of time is λ (independently)

What is the distribution of $Z=\#$ occurrences of event per t units of time?
$\mathbb{E}[Z]=t \lambda$
Z is independent over disjoint intervals
so $Z \sim \operatorname{Poi}(t \lambda)$

The Exponential PDF/CDF
Assume expected \# of occurrences of an event per unit of time is $\lambda=i)=e^{-\lambda t}\left(\begin{array}{ll}(\lambda+1) \\ i!\end{array}\right.$ Numbers of occurrences of event: Poisson distribution How long to wait until next event? Exponential density!
\qquad

- Let X be the time till the first event We will compute $F_{X}(t)$ and $f_{X}(t)$
- We know $Z \sim \operatorname{Poi}(t \lambda)$ be the \# of events in the first t units of time, for $t \geq 0$.

$$
f_{x}(t)=\frac{d}{\lambda t}\left(1-e^{(x)}\right)=\lambda e^{-\lambda t}
$$

$$
\begin{aligned}
& P(X>t)=P(\text { rownot insist the mas) } \\
& =P(Z=0)=e^{-\lambda t} \frac{(x)^{0}}{0!}=e^{-\lambda t} \\
& F_{X}(t)=P(X \leq t)=1-P(X>t)=1-e^{-\lambda t}
\end{aligned}
$$

The Exponential PDF/CDF

$$
W \sim \operatorname{Poi}(\lambda) \Rightarrow P(W=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Assume expected \# of occurrences of an event per unit of time is λ (independently) Numbers of occurrences of event: Poisson distribution
How long to wait until next event? Exponential density!

- The exponential RV has range $[0, \infty]$, unlike Poisson with range $\{0,1,2, \ldots\}$
- Let $X \sim \operatorname{Exp}(\lambda)$ be the time till the first event. We will compute $F_{X}(t)$ and $f_{X}(t)$
- We know $Z \sim \operatorname{Poi}(t \lambda)$ be the $\#$ of events in the first t units of time, for $t \geq 0$.
- $\quad P(X>t)=P($ no event in the first t units $)=P(Z=0)=e^{-t \lambda \frac{(t \lambda)^{0}}{0!}}=e^{-t \lambda}$
- $\quad F_{X}(t)=P(X \leq t)=1-P(Y>t)=1-e^{-t \lambda}$
- $f_{X}(t)=\frac{d}{d t} F_{X}(t)=\lambda e^{-t \lambda}$

Exponential Distribution

$$
P(X>t)=e^{-t \lambda}
$$

Definition. An exponential random variable X with parameter $\lambda \geq 0$ is follows the exponential density

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

We write $X \sim \operatorname{Exp}(\lambda)$ and say X that follows the exponential distribution.

$$
E(X)=\frac{1}{\lambda}
$$

Expectation

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{-\infty}^{+\infty} f_{0}^{\infty} \cdot x \mathrm{~d} x \\
& =\int_{0}^{\infty} \times e^{-\lambda x} \times d x
\end{aligned}
$$

$$
P(X>t)=e^{-t \lambda}
$$

Expectation

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right. \\
P(X>t)=e^{-t \lambda}
\end{gathered}
$$

$$
=\int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot x \mathrm{~d} x
$$

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

$$
=\left.\left(-\left(x+\frac{1}{\lambda}\right) e^{-\lambda x}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda}
$$

Somewhat complex calculation use integral by parts

Memorylessness

Definition. A random variable is memoryless if for all $s, t>0$,

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

Assuming an exponential distribution, if you've waited s minutes, The probability of waiting t more is exactly same as when $s=0$.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Memorylessness of Exponential
Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless. Proof.

$$
\begin{aligned}
& \frac{P(X>s+t \mid X>s)}{A}=\frac{P(X>s+t n X>s)}{P(X>s)}=\frac{P(X>s+t)}{P(X>s)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=P(X>t) \\
& \frac{e^{a}}{e^{b}}=e^{a-b}
\end{aligned}
$$

Memorylessness of Exponential

Fact. $X \sim \operatorname{Exp}(\lambda)$ is memoryless.

$$
P(X>t)=e^{-\lambda t}
$$

Proof that assuming exp distr, if you've waited s minutes, prob of waiting t more is exactly same as when $s=0$

Proof.

$$
\begin{aligned}
P(X>s+t \mid X>s) & =\frac{P(\{X>s+t\} \cap\{X>s\})}{P(X>s)} \\
& =\frac{P(X>s+t)}{P(X>s)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=P(X>t)
\end{aligned}
$$

The only memoryless RVs are the geometric RV (discrete) and Exp RV (continuous)

Example

$$
\begin{gathered}
T \sim \exp \left(\frac{1}{10}\right) \\
f_{T}(x)=\lambda e^{-\lambda x}=\frac{1}{10} e^{-\frac{x}{10}}
\end{gathered}
$$

$$
E(T)=10 \text { ming }
$$

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 ming.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
P\left(10 \leq T^{\prime}\right. & =20)=\int_{10}^{20} f_{x}(x) d x \\
& =\int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} d x
\end{aligned}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& P(10 \leq T \leq 20)=\int_{10}^{20} \frac{1}{10} e^{-\frac{x}{10}} d x \\
& y=\frac{x}{10} \text { so } d y=\frac{d x}{10} \\
& P(10 \leq T \leq 20)=\int_{1}^{2} e^{-y} d y=-\left.e^{-y}\right|_{1} ^{2}=e^{-1}-e^{-2}
\end{aligned}
$$

Example

- Time it takes to check someone out at a grocery store is exponential with an expected value of 10 mins.
- Independent for different customers
- If you are the second person in line, what is the probability that you will have to wait between 10 and 20 mins?

$$
\begin{aligned}
& T \sim \operatorname{Exp}\left(\frac{1}{10}\right) \\
& \text { so } F_{T}(t)=1-e^{-\frac{t}{10}} \\
& \begin{aligned}
P(10 \leq T \leq 20) & =F_{T}(20)-F_{T}(10) \\
& =1-e^{-\frac{20}{10}}-\left(1-e^{-\frac{10}{10}}\right)=e^{-1}-e^{-2}
\end{aligned}
\end{aligned}
$$

Agenda

- Uniform Distribution
- Exponential Distribution
- Normal Distribution

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density $\quad x=\pi+a$ Carl Friedrich Gauss

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\mathcal{N}(0,1)
$$

The Normal Distribution

$$
E(x)=\int_{-\infty}^{-\infty} \frac{x}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-y)^{2}}{\partial \sigma^{2}}} d x=\mu
$$

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geqq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}[X]=\mu$, and $\operatorname{Var}(X)=\sigma^{2}$

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}[X]=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Proof of expectation is easy because density curve is symmetric around μ, $f_{X}(\mu-x)=f_{X}(\mu+x)$, but proof for variance requires integration of $e^{-x^{2} / 2}$ We will see next time why the normal distribution is (in some sense) the most important distribution.

The Normal Distribution
Aka a "Bell Curve" (imprecise name)

