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Foundations of Computing II
Lecture 14: Quick wrapup of discrete RVs

Continuous RV
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Agenda

• Wrap-up of Discrete RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous RVs
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General principle: 
• Events happen at an average rate 

of 𝜆 per time unit 
• Number of events happening at a 

time unit 𝑋 is distributed 
according to Poi(𝜆) 

Definition. A Poisson random variable 𝑋 with parameter 𝜆 ≥ 0 is such 
that for all 𝑖 = 0,1,2,3…,

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅ "
!

#!

• Poisson approximates Binomial when 𝑛 is large, 
𝑝 is small, and 𝑛𝑝 is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables



Zoo of Random Variables🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Poisson(𝜆)

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅
𝜆#

𝑖!

𝐸 𝑋 = 𝜆

Var 𝑋 = 𝜆

𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

𝑝$ 1 − 𝑝 %!$

𝐸 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)

𝑝&

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
'
%

(!'
)!%
(
)

𝐸 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 −𝐾)(𝑁 − 𝑛)

𝑁&(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝% 1 − 𝑝 )!%

𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝐸 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 %!*𝑝

𝐸 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝&



Negative Binomial Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌# ∼ Ber 𝑝 before seeing the 𝑟%& success.                              
Equivalently, 𝑋 = ∑#'() 𝑍# where Z# ∼ Geo(𝑝).
𝑋 is called a Negative Binomial random variable with parameters 𝑟, 𝑝. 

Notation: 𝑋 ∼ NegBin(𝑟, 𝑝)

PMF: 𝑃 𝑋 = 𝑘 =

Expectation: 𝔼 𝑋 =
5



Negative Binomial Random Variables

A discrete random variable 𝑋 that models the number of independent 
trials 𝑌# ∼ Ber 𝑝 before seeing the 𝑟%& success.                              
Equivalently, 𝑋 = ∑#'() 𝑍# where Z# ∼ Geo(𝑝).
𝑋 is called a Negative Binomial random variable with parameters 𝑟, 𝑝. 

Notation: 𝑋 ∼ NegBin(𝑟, 𝑝)
PMF: 𝑃 𝑋 = 𝑘 = *!(

)!( 𝑝) 1 − 𝑝 *!)

Expectation: 𝔼 𝑋 = )
+

Variance: Var 𝑋 = )((!+)
+"
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Hypergeometric Random Variables

A discrete random variable 𝑋 that models the number of successes in 𝑛
draws (without replacement) from 𝑁 items that contain 𝐾 successes in 
total. 𝑋 is called a Hypergeometric RV with parameters 𝑁,𝐾, 𝑛. 

Notation: 𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

PMF: 𝑃 𝑋 = 𝑘 =
#
$

%&#
'&$
%
'

Expectation: 𝔼 𝑋 = 𝑛 .
/

Variance: Var 𝑋 = 𝑛 .(/!.)(/!0)
/"(/!()
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Hope you enjoyed the zoo! 🦍🐘🦁🐅🦓🐪🦒
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𝑋 ∼ Unif(𝑎, 𝑏)

𝑃 𝑋 = 𝑘 =
1

𝑏 − 𝑎 + 1
𝔼 𝑋 =

𝑎 + 𝑏
2

Var 𝑋 =
(𝑏 − 𝑎)(𝑏 − 𝑎 + 2)

12

𝑋 ∼ NegBin(𝑟, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

𝑝$ 1 − 𝑝 %!$

𝔼 𝑋 =
𝑟
𝑝

Var 𝑋 =
𝑟(1 − 𝑝)

𝑝&

𝑋 ∼ HypGeo(𝑁, 𝐾, 𝑛)

𝑃 𝑋 = 𝑘 =
'
%

(!'
)!%
(
)

𝔼 𝑋 = 𝑛
𝐾
𝑁

Var 𝑋 = 𝑛
𝐾(𝑁 −𝐾)(𝑁 − 𝑛)

𝑁&(𝑁 − 1)

𝑋 ∼ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘
𝑝% 1 − 𝑝 )!%

𝔼 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑋 ∼ Ber(𝑝)

𝑃 𝑋 = 1 = 𝑝, 𝑃 𝑋 = 0 = 1 − 𝑝

𝔼 𝑋 = 𝑝

Var 𝑋 = 𝑝(1 − 𝑝)

𝑋 ∼ Geo(𝑝)

𝑃 𝑋 = 𝑘 = 1 − 𝑝 %!*𝑝

𝔼 𝑋 =
1
𝑝

Var 𝑋 =
1 − 𝑝
𝑝&

𝑋 ∼ Poisson(𝜆)

𝑃 𝑋 = 𝑖 = 𝑒!" ⋅
𝜆#

𝑖!

𝐸 𝑋 = 𝜆

Var 𝑋 = 𝜆



Agenda

• Wrap-up of Poisson RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
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Often we want to model experiments where the outcome is not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.

10

0 1𝑇 = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

𝑃 𝑇 ≥ 0.5 =
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 0.2 ≤ 𝑇 ≤ 0.5 =

0 10.50.2
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Lightning strikes a pole within a one-minute time frame
• 𝑇 = time of lightning strike
• Every point in time within [0,1] is equally likely

𝑃 𝑇 = 0.5 =

0 10.5



Bottom line

• This gives rise to a different type of random variable
• 𝑃 𝑇 = 𝑥 = 0 for all 𝑥 ∈ [0,1]
• Yet, somehow we want
– 𝑃 𝑇 ∈ [0,1] = 1
– 𝑃 𝑇 ∈ [𝑎, 𝑏] = 𝑏 − 𝑎
– …

• How do we model the behavior of 𝑇?

14

First try:  A discrete approximation



Recall:  Cumulative Distribution Function (CDF)

15-1 0 1 2 3 -1 0 1 2 3

1/4
1/2

3/4

1

𝑝! 𝐹!

Probability Mass Function
PMF

Cumulative Distribution Function
CDF
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Poll: Given the CDF, how do you compute the 
pmf?

Pr 𝑋 = 𝑘 =

a. 𝐹V 𝑘 − 1
b. 𝐹V 1 + 𝐹V 2 +⋯+ 𝐹V 𝑘 − 1
c. 𝐹V 𝑘 − 𝐹V 𝑘 − 1
d. I don’t know.

Slido.com/4694375 

https://www.slido.com/


𝟏
𝒏
𝟐
𝒏
𝟑
𝒏 𝟏

𝒊
𝒏

𝟏/𝒏
𝟐/𝒏
𝟑/𝒏

𝒊/𝒏

𝟏

𝟏
𝒏
𝟐
𝒏
𝟑
𝒏 𝟏

𝒊
𝒏

𝑝!

Probability Mass Function
PMF

A Discrete Approximation
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Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓!: ℝ → ℝ, such that 

19

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1
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Probability Density Function - Intuition

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥
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Probability Density Function - Intuition

𝑦

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
b

b
𝑓V 𝑥 d𝑥 = 0

Density ≠ Probability

𝑓V 𝑦 ≠ 0 𝑃 𝑋 = 𝑦 = 0
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Probability Density Function - Intuition

𝑦𝑦 −
𝜖
2

𝑦 +
𝜖
2

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
b

b
𝑓V 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= ?
b]cd

b_cd
𝑓V 𝑥 d𝑥 ≈ 𝜖𝑓V(𝑦)

What 𝑓V(𝑥) measures: The local rate at which probability accumulates 



𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓V 𝑦
𝜖𝑓V 𝑧

=
𝑓V 𝑦
𝑓V 𝑧 24

Probability Density Function - Intuition

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

= 2

𝑦 𝑧

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
b

b
𝑓V 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= ?
b]cd

b_cd
𝑓V 𝑥 d𝑥 ≈ 𝜖𝑓V(𝑦)



Definition. A continuous random variable 𝑋 is defined by a 
probability density function (PDF) 𝑓!: ℝ → ℝ, such that

25

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
b

b
𝑓V 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝑃 𝑦 −
𝜖
2
≤ 𝑋 ≤ 𝑦 +

𝜖
2

= ?
b]cd

b_cd
𝑓V 𝑥 d𝑥 ≈ 𝜖𝑓V(𝑦)

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓V 𝑦
𝜖𝑓V 𝑧

=
𝑓V 𝑦
𝑓V 𝑧



26



PDF of Uniform RV

27
10

𝑓1 𝑥 = T
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

?
]^

_^
𝑓V 𝑥 d𝑥 = ?

h

i
𝑓V 𝑥 d𝑥 = 1 ⋅ 1 = 1

0

1

𝑋 ∼ Unif(0,1) Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1



Probability of Event

28
10

0

1

𝑋 ∼ Unif(0,1)

𝑎 𝑏

𝑓1 𝑥 = T
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥

1. If 0 ≤ 𝑎 and 𝑎 ≤ 𝑏 ≤ 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏 − 𝑎

2. If 𝑎 < 0 and 0 ≤ 𝑏 ≤ 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏

3. If 𝑎 ≥ 0 and 𝑏 > 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑏 − 𝑎

4. If 𝑎 < 0 and 𝑏 > 1
𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 1

Poll:   Slido.com/4694375 

A. All of them are correct
B. Only 1, 2, 4 are right 
C. Only 1 is right 
D. Only 1 and 2 are right 

https://www.slido.com/
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Probability of Event

30
10

0

1

𝑋 ∼ Unif(0,1)

𝑓1 𝑥 = T
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Non-negativity: 𝑓V 𝑥 ≥ 0 for all 𝑥 ∈ ℝ

Normalization: ∫]^
_^𝑓V 𝑥 d𝑥 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ?
`

a
𝑓V 𝑥 d𝑥

𝑃 𝑋 = 𝑦 = 𝑃 𝑦 ≤ 𝑋 ≤ 𝑦 = ?
b

b
𝑓V 𝑥 d𝑥 = 0

𝑃 𝑋 ≈ 𝑦 ≈ 𝜖𝑓V 𝑦 = 𝜖

𝑃 𝑋 ≈ 𝑦
𝑃 𝑋 ≈ 𝑧

≈
𝜖𝑓V 𝑦
𝜖𝑓V 𝑧

=
𝑓V 𝑦
𝑓V 𝑧



PDF of Uniform RV

31
10

𝑓1 𝑥 =

0

𝑋 ∼ Unif(0,0.5)

0.5



PDF of Uniform RV

32
10

𝑓1 𝑥 = T
2, 𝑥 ∈ [0,0.5]
0, 𝑥 ∉ [0,0.5]

?
]^

_^
𝑓V 𝑥 d𝑥 = ?

h

i
𝑓V 𝑥 d𝑥 = 2 ⋅ 0.5 = 1

0

2

𝑋 ∼ Unif(0,0.5)

Density ≠ Probability

1

0.5

𝑓V 𝑥 ≫ 1 is possible!

Probability on [0,0.5] accumulates at 
twice the rate compared to Unif(0,1)



Uniform Distribution

33

𝑓1 𝑥 = Z
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

?
]^

_^
𝑓V 𝑥 d𝑥 = 𝑏 − 𝑎

1
𝑏 − 𝑎

= 1

0

1
𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏
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10

𝑓j 𝑥 = S
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

0

1

Example. 𝑇 ∼ Unif(0,1)

10
0

𝐹j 𝑥 = 𝑃(𝑇 ≤ 𝑥) = V
0 𝑥 ≤ 0
? 0 ≤ 𝑥 ≤ 1
1 1 ≤ 𝑥

Probability Density Function

Cumulative Distribution Function 

1

𝑥

𝑥

𝑥



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 
𝐹! 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ∫"#

$ 𝑓! 𝑥 d𝑥

35

By the fundamental theorem of Calculus 𝑓1 𝑥 = 2
23
𝐹1(𝑥)



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 𝑋 is 
𝐹! 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ∫"#

$ 𝑓! 𝑥 d𝑥

36

Therefore: 𝑃 𝑋 ∈ [𝑎, 𝑏] = 𝐹1 𝑏 − 𝐹1(𝑎)

By the fundamental theorem of Calculus 𝑓1 𝑥 = 2
23
𝐹1(𝑥)

𝐹1 is monotone increasing, since 𝑓1 𝑥 ≥ 0. That is 𝐹1 𝑐 ≤ 𝐹1 𝑑 for 𝑐 ≤ 𝑑

lim4→!6 𝐹1 𝑎 = 𝑃 𝑋 ≤ −∞ = 0 lim4→76 𝐹1 𝑎 = 𝑃 𝑋 ≤ +∞ = 1



From Discrete to Continuous

Discrete Continuous
PMF/PDF 𝑝1 𝑥 = 𝑃 𝑋 = 𝑥 𝑓1 𝑥 ≠ 𝑃 𝑋 = 𝑥 = 0

CDF 𝐹1 𝑥 = e
% 8 3

𝑝1(𝑡) 𝐹1 𝑥 = g
!6

3
𝑓1 𝑡 𝑑𝑡

Normalization e
3

𝑝1 𝑥 = 1 g
!6

6
𝑓1 𝑥 𝑑𝑥 = 1

Expectation 𝔼 𝑔 𝑋 =e
3

𝑔 𝑥 𝑝1(𝑥) 𝔼 𝑔 𝑋 = g
!6

6
𝑔 𝑥 𝑓1 𝑥 𝑑𝑥



Agenda

• Wrap-up of Poisson RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
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Expectation of a Continuous RV

39

Definition. The expected value of a continuous RV 𝑋 is defined as

𝔼[𝑋] = g
!6

76
𝑓1 𝑥 ⋅ 𝑥 d𝑥

Fact. 𝔼[𝑎𝑋 + 𝑏𝑌 + 𝑐] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] + 𝑐
Proof follows same 
ideas as discrete case



Expectation of a Continuous RV

40

Definition. The expected value of a continuous RV 𝑋 is defined as

𝔼[𝑋] = g
!6

76
𝑓1 𝑥 ⋅ 𝑥 d𝑥

Fact. 𝔼[𝑎𝑋 + 𝑏𝑌 + 𝑐] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] + 𝑐

Definition. The variance of a continuous RV 𝑋 is defined as

Var 𝑋 = g
!6

76
𝑓1 𝑥 ⋅ 𝑥 − 𝔼[𝑋] 9 d𝑥 = 𝔼[𝑋9] − 𝔼[𝑋]9

Proofs follow same 
ideas as discrete case



Expectation of a Continuous RV

41

Definition.

𝔼[𝑋] = m
!+

,+
𝑓- 𝑥 ⋅ 𝑥 d𝑥

𝑓. 𝑥 = q
1, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1]

Example. 𝑇 ∼ Unif(0,1)

100

1

𝑓. 𝑥 ⋅ 𝑥 = q
𝑥, 𝑥 ∈ [0,1]
0, 𝑥 ∉ [0,1] 𝔼[𝑇] =

1
2
19 =

1
2

Area of triangle
100

1



Uniform Density – Expectation 

42

𝑓1 𝑥 = Z
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼[𝑋] = g
!6

76
𝑓1 𝑥 ⋅ 𝑥 d𝑥

=
1

𝑏 − 𝑎
g
4

:
𝑥 d𝑥 =

1
𝑏 − 𝑎

j
𝑥9

2
4

:

=
1

𝑏 − 𝑎
𝑏9 − 𝑎9

2

=
(𝑏 − 𝑎)(𝑎 + 𝑏)

2(𝑏 − 𝑎)
=
𝑎 + 𝑏
2
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𝑓1 𝑥 = Z
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼[𝑋] =
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𝑓1 𝑥 = Z
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼[𝑋9] = g
!6

76
𝑓1 𝑥 ⋅ 𝑥9 d𝑥

=
1

𝑏 − 𝑎
g
4

:
𝑥9 d𝑥 =

1
𝑏 − 𝑎

j
𝑥;

3
4

:

=
𝑏; − 𝑎;

3(𝑏 − 𝑎)

=
(𝑏 − 𝑎)(𝑏9 + 𝑎𝑏 + 𝑎9)

3(𝑏 − 𝑎)
=
𝑏9 + 𝑎𝑏 + 𝑎9

3
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𝑓1 𝑥 = Z
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else𝑋 ∼ Unif(𝑎, 𝑏)

𝔼[𝑋9] =
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𝑋 ∼ Unif(𝑎, 𝑏)
𝔼[𝑋d] =

𝑏d + 𝑎𝑏 + 𝑎d

3
𝔼[𝑋] =

𝑎 + 𝑏
2

Var 𝑋 = 𝔼[𝑋9] − 𝔼[𝑋]9

=
𝑏9 + 𝑎𝑏 + 𝑎9

3
−
𝑎9 + 2𝑎𝑏 + 𝑏9

4

=
4𝑏9 + 4𝑎𝑏 + 4𝑎9

12
−
3𝑎9 + 6𝑎𝑏 + 3𝑏9

12

=
𝑏9 − 2𝑎𝑏 + 𝑎9

12
=

𝑏 − 𝑎 9

12
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𝑓1 𝑥 = Z
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

0 else

0

1
𝑏 − 𝑎

𝑋 ∼ Unif(𝑎, 𝑏)

𝑎 𝑏

𝐹V 𝑦 =
0 𝑥 < 𝑎

𝑥 − 𝑎
𝑏 − 𝑎

𝑥 ∈ [𝑎, 𝑏]

1 𝑥 > 𝑏

𝔼 𝑋 =
𝑎 + 𝑏
2

Var 𝑋 =
𝑏 − 𝑎 d

12


