CSE 312

Foundations of Computing II

Lecture 14: Quick wrapup of discrete RVs Continuous RV

Slido.com/4694375

Agenda

- Wrap-up of Discrete RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous RVs

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and $n p$ is moderate
- Sum of independent Poisson is still a Poisson

$$
X \sim \operatorname{Poisson}(\lambda)
$$

$P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$
$E[X]=\lambda$
$\operatorname{Var}(X)=\lambda$

$X \sim \operatorname{Geo}(p)$

$P(X=k)=(1-p)^{k-1} p$
$E[X]=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

$X \sim \operatorname{Ber}(p)$

$$
\begin{aligned}
& P(X=1)=p, P(X=0)=1-p \\
& E[X]=p \\
& \operatorname{Var}(X)=p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{NegBin}(r, p)
$$

$$
P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

$$
E[X]=\frac{r}{p}
$$

$$
\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
$$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
\begin{aligned}
& P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \\
& E[X]=n \frac{K}{N} \\
& \operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
\end{aligned}
$$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $Z_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$

PMF: $P(X=k)=$

Expectation: $\mathbb{E}[X]=$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $Z_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF: $P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
Expectation: $\mathbb{E}[X]=\frac{r}{p}$
Variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$
PMF: $P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
Expectation: $\mathbb{E}[X]=n \frac{K}{N}$
Variance: $\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
\mathbb{E}[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Ber}(p)$
$P(X=1)=p, P(X=0)=1-p$
$\mathbb{E}[X]=p$
$\operatorname{Var}(X)=p(1-p)$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mathbb{E}[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
\begin{aligned}
& P(X=k)=(1-p)^{k-1} p \\
& \mathbb{E}[X]=\frac{1}{p} \\
& \operatorname{Var}(X)=\frac{1-p}{p^{2}}
\end{aligned}
$$

$X \sim \operatorname{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$P(X=k)=\left(\begin{array}{ll}k-1 & \\ r- & X \sim \operatorname{Poisson}(\lambda)\end{array}\right.$	
$\mathbb{E}[X]=\frac{r}{p}$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$\operatorname{Var}(X)=\frac{r(1-x}{p^{2}}$	$P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$
$E[X]=\lambda$	$\frac{\ddots(N-K)(N-n)}{N^{2}(N-1)}$
$\operatorname{Var}(X)=\lambda$	8

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.

Often we want to model experiments where the outcome is not discrete.

Example - Lightning Strike

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every time within $[0,1]$ is equally likely
- Time measured with infinitesimal precision.

The outcome space is not discrete

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

$P(0.2 \leq T \leq 0.5)=$

Lightning strikes a pole within a one-minute time frame

- T = time of lightning strike
- Every point in time within $[0,1]$ is equally likely

Bottom line

- This gives rise to a different type of random variable
- $P(T=x)=0$ for all $x \in[0,1]$
- Yet, somehow we want
$-P(T \in[0,1])=1$
- $P(T \in[a, b])=b-a$
- ...
- How do we model the behavior of T ?

First try: A discrete approximation

Recall: Cumulative Distribution Function (CDF)

Poll: Given the CDF, how do you compute the pmf?

Slido.com/4694375

$\operatorname{Pr}(X=k)=$
a. $F_{X}(k-1)$
b. $F_{X}(1)+F_{X}(2)+\cdots+F_{X}(k-1)$
c. $F_{X}(k)-F_{X}(k-1)$
d. I don't know.

A Discrete Approximation

Probability Mass Function

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{aligned}
& \text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
& \qquad P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

$$
\begin{array}{r}
\text { Normalization: } \int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1 \\
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x \\
P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0
\end{array}
$$

Probability Density Function - Intuition

What $f_{X}(x)$ measures: The local rate at which probability accumulates

Probability Density Function - Intuition

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y-\frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)} 24$

Definition. A continuous random variable X is defined by a probability density function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, such that

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
Normalization: $\int_{-\infty}^{+\infty} f_{X}(x) \mathrm{d} x=1$
$P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$
$P(X=y)=P(y \leq X \leq y)=\int_{y}^{y} f_{X}(x) \mathrm{d} x=0$
$P(X \approx y) \approx P\left(y-\frac{\epsilon}{2} \leq X \leq y+\frac{\epsilon}{2}\right)=\int_{y \frac{\epsilon}{2}}^{y+\frac{\epsilon}{2}} f_{X}(x) \mathrm{d} x \approx \epsilon f_{X}(y)$
$\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_{X}(y)}{\epsilon f_{X}(z)}=\frac{f_{X}(y)}{f_{X}(z)}$

PDF of Uniform RV

$$
X \sim \operatorname{Unif}(0,1)
$$

Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

Probability of Event

$X \sim \operatorname{Unif}(0,1)$
Non-negativity: $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$

PDF of Uniform RV

$X \sim \operatorname{Unif}(0,0.5)$

PDF of Uniform RV

Density \neq Probability

$f_{X}(x) \gg 1$ is possible!
$X \sim \operatorname{Unif}(0,0.5)$

Uniform Distribution
$X \sim \operatorname{Unif}(a, b)$

Example. $T \sim \operatorname{Unif}(0,1)$
0

Probability Density Function

$$
f_{T}(x)= \begin{cases}1, & x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

Cumulative Distribution Function

$$
F_{T}(x)=P(T \leq x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
? & 0 \leq x \leq 1 \\
1 & 1 \leq x
\end{array}\right.
$$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

By the fundamental theorem of Calculus $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
Therefore: $P(X \in[a, b])=F_{X}(b)-F_{X}(a)$
F_{X} is monotone increasing, since $f_{X}(x) \geq 0$. That is $F_{X}(c) \leq F_{X}(d)$ for $c \leq d$
$\lim _{a \rightarrow-\infty} F_{X}(a)=P(X \leq-\infty)=0 \quad \lim _{a \rightarrow+\infty} F_{X}(a)=P(X \leq+\infty)=1_{36}$

From Discrete to Continuous

	Discrete	Continuous
PMF/PDF	$p_{X}(x)=P(X=x)$	$f_{X}(x) \neq P(X=x)=0$
CDF	$F_{X}(x)=\sum_{t \leq x} p_{X}(t)$	$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
Normalization	$\sum_{x} p_{X}(x)=1$	$\int_{-\infty}^{\infty} f_{X}(x) d x=1$
Expectation	$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
Proof follows same ideas as discrete case

Expectation of a Continuous RV

Definition. The expected value of a continuous $\mathrm{RV} X$ is defined as

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

Fact. $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
Proofs follow same ideas as discrete case

Definition. The variance of a continuous $\mathrm{RV} X$ is defined as

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty} f_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \mathrm{~d} x=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Expectation of a Continuous RV

Example. $T \sim \operatorname{Unif}(0,1)$

Definition.

$$
\mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x
$$

$$
\mathbb{E}[T]=\underbrace{\frac{1}{2} 1^{2}=\frac{1}{2}}_{\text {Area of triangle }}
$$

Uniform Density - Expectation

$$
X \sim \operatorname{Unif}(a, b)
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbb{E}[X]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x \mathrm{~d} x \\
& =\frac{1}{b-a} \int_{a}^{b} x \mathrm{~d} x= \\
& =\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{1}{b-a}\left(\frac{b^{2}-a^{2}}{2}\right) \\
& \\
& =\frac{(b-a)(a+b)}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Uniform Density - Expectation

$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$\mathbb{E}[X]=$

Uniform Density - Variance

$$
\begin{aligned}
& X \sim \operatorname{Unif}(a, b) \\
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{+\infty} f_{X}(x) \cdot x^{2} \mathrm{~d} x
\end{aligned}
$$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
=\frac{1}{b-a} \int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
$$

$$
=\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

Uniform Density - Variance
$X \sim \operatorname{Unif}(a, b)$
$\mathbb{E}\left[X^{2}\right]=$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

Uniform Density - Variance

$$
\mathbb{E}\left[X^{2}\right]=\frac{b^{2}+a b+a^{2}}{3} \quad \mathbb{E}[X]=\frac{a+b}{2}
$$

$X \sim \operatorname{Unif}(a, b)$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\begin{aligned}
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{4 b^{2}+4 a b+4 a^{2}}{12}-\frac{3 a^{2}+6 a b+3 b^{2}}{12}
\end{aligned}
$$

$$
=\frac{b^{2}-2 a b+a^{2}}{12}=\frac{(b-a)^{2}}{12}
$$

Uniform Distribution Summary
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & x \in[a, b] \\
0 & \text { else }
\end{array}\right.
$$

$$
F_{X}(y)=\left\{\begin{array}{cc}
\frac{0}{x-a} & x<a \\
1 & x \in[a, b] \\
\cdots>- &
\end{array}\right.
$$

$$
\mathbb{E}[X]=\frac{a+b}{2}
$$

$$
\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

