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Foundations of Computing II
Lecture 14: Quick wrapup of discrete RVs

Continuous RV
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Agenda

• Wrap-up of Discrete RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous RVs
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General principle: 
• Events happen at an average rate 

of ! per time unit 
• Number of events happening at a 

time unit " is distributed 
according to Poi(!) 

Definition. A Poisson random variable ! with parameter " ≥ 0 is such 
that for all % = 0,1,2,3…,

, ! = % = -!" ⋅ "
!

#!

• Poisson approximates Binomial when # is large, 
$ is small, and #$ is moderate

• Sum of independent Poisson is still a Poisson

Poisson Random Variables
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Zoo of Random Variables!"#$%&'
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! ∼ Poisson())

+ ! = - = .!" ⋅ )
#

-!

1 ! = )

Var ! = )

! ∼ NegBin(9, ;)

+ ! = < = < − 1
9 − 1 ;$ 1 − ; %!$

1 ! = 9
;

Var ! = 9(1 − ;)
;&

! ∼ HypGeo(C, D, E)

+ ! = < =
'
%

(!'
)!%
(
)

1 ! = EDC
Var ! = ED(C −D)(C − E)C&(C − 1)

! ∼ Bin(E, ;)

+ ! = < = E
< ;% 1 − ; )!%

1 ! = E;
Var ! = E;(1 − ;)

! ∼ Ber(;)

+ ! = 1 = ;, + ! = 0 = 1 − ;

1 ! = ;

Var ! = ;(1 − ;)

! ∼ Geo(;)

+ ! = < = 1 − ; %!*;
1 ! = 1

;
Var ! = 1 − ;

;&

0



Negative Binomial Random Variables

A discrete random variable ! that models the number of independent 
trials /# ∼ Ber 4 before seeing the 5%& success.                              
Equivalently, ! = ∑#'() 7# where Z# ∼ Geo(4).
! is called a Negative Binomial random variable with parameters 5, 4. 

Notation: ! ∼ NegBin(5, 4)

PMF: , ! = A =

Expectation: B ! =
5
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Negative Binomial Random Variables

A discrete random variable ! that models the number of independent 
trials /# ∼ Ber 4 before seeing the 5%& success.                              
Equivalently, ! = ∑#'() 7# where Z# ∼ Geo(4).
! is called a Negative Binomial random variable with parameters 5, 4. 

Notation: ! ∼ NegBin(5, 4)
PMF: , ! = A = *!(

)!( 4) 1 − 4 *!)

Expectation: B ! = )
+

Variance: Var ! = )((!+)
+"
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Hypergeometric Random Variables

A discrete random variable ! that models the number of successes in F
draws (without replacement) from G items that contain H successes in 
total. ! is called a Hypergeometric RV with parameters G,H, F. 

Notation: ! ∼ HypGeo(G, H, F)

PMF: , ! = A =
#
$

%&#
'&$
%
'

Expectation: B ! = F .
/

Variance: Var ! = F .(/!.)(/!0)
/"(/!()

7
n damandm



Hope you enjoyed the zoo! !"#$%&'
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! ∼ Unif(I, J)

+ ! = < = 1
J − I + 1

L ! = I + J
2

Var ! = (J − I)(J − I + 2)
12

! ∼ NegBin(9, ;)

+ ! = < = < − 1
9 − 1 ;$ 1 − ; %!$

L ! = 9
;

Var ! = 9(1 − ;)
;&

! ∼ HypGeo(C, D, E)

+ ! = < =
'
%

(!'
)!%
(
)

L ! = EDC
Var ! = ED(C −D)(C − E)C&(C − 1)

! ∼ Bin(E, ;)

+ ! = < = E
< ;% 1 − ; )!%

L ! = E;
Var ! = E;(1 − ;)

! ∼ Ber(;)

+ ! = 1 = ;, + ! = 0 = 1 − ;

L ! = ;

Var ! = ;(1 − ;)

! ∼ Geo(;)

+ ! = < = 1 − ; %!*;
L ! = 1

;
Var ! = 1 − ;

;&

! ∼ Poisson())

+ ! = - = .!" ⋅ )
#

-!

1 ! = )

Var ! = )



Agenda

• Wrap-up of Poisson RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.

9

Often we want to model experiments where the outcome is not discrete.



Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every time within [0,1] is equally likely
– Time measured with infinitesimal precision.

10

0 1N = 0.71237131931129576…

The outcome space is not discrete
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

0 10.5

" ! ≥ 0.5 = 0.5
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

" 0.2 ≤ ! ≤ 0.5 =

0 10.50.2

0,5 0.2 0.3
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Lightning strikes a pole within a one-minute time frame
• ! = time of lightning strike
• Every point in time within [0,1] is equally likely

" ! = 0.5 =
0 10.5 0000

O



Bottom line

• This gives rise to a different type of random variable
• " ! = * = 0 for all * ∈ [0,1]
• Yet, somehow we want
– , L ∈ [0,1] = 1
– , L ∈ [P, Q] = Q − P
– …

• How do we model the behavior of !?
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First try:  A discrete approximation



Recall:  Cumulative Distribution Function (CDF)

15-1 0 1 2 3 -1 0 1 2 3

1/4
1/2

3/4

1

0! 1!
Probability Mass Function

PMF
Cumulative Distribution Function

CDF

PxH P Xx FxH P Xx
Fx monotone increasinggPxk

l
from O to 1

Paso tx Fx x Ex Px's
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Poll: Given the CDF, how do you compute the 
pmf?

Pr " = ( =

a. +V ( − 1
b. +V 1 + +V 2 +⋯+ +V ( − 1
c. +V ( − +V ( − 1
d. I don’t know.

Slido.com/4694375 
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Probability Mass Function
PMF

A Discrete Approximation
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Probability Mass Function
PMF

A Discrete Approximation
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Definition. A continuous random variable 2 is defined by a 
probability density function (PDF) 3!: ℝ → ℝ, such that 

19

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ
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Probability Density Function - Intuition

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

I
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Probability Density Function - Intuition

@

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

; " = @ = ; @ ≤ " ≤ @ = ?
b

b
3V 4 d4 = 0

Density ≠ Probability

3V @ ≠ 0 ; " = @ = 0



23

Probability Density Function - Intuition

@@ − B
2 @ + B

2

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

; " = @ = ; @ ≤ " ≤ @ = ?
b

b
3V 4 d4 = 0

; " ≈ @ ≈ ; @ − B
2 ≤ " ≤ @ + B

2 = ?
b]cd

b_cd 3V 4 d4 ≈ B3V(@)

What 3V(4) measures: The local rate at which probability accumulates 

no

l

I



; " ≈ @
; " ≈ F ≈ B3V @

B3V F = 3V @
3V F 24

Probability Density Function - Intuition

+ ! ≈ f
+ ! ≈ g = 2

f g

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

; " = @ = ; @ ≤ " ≤ @ = ?
b

b
3V 4 d4 = 0

; " ≈ @ ≈ ; @ − B
2 ≤ " ≤ @ + B

2 = ?
b]cd

b_cd 3V 4 d4 ≈ B3V(@)my



Definition. A continuous random variable 2 is defined by a 
probability density function (PDF) 3!: ℝ → ℝ, such that
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Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ
Normalization: ∫]^

_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

; " = @ = ; @ ≤ " ≤ @ = ?
b

b
3V 4 d4 = 0

; " ≈ @ ≈ ; @ − B
2 ≤ " ≤ @ + B

2 = ?
b]cd

b_cd 3V 4 d4 ≈ B3V(@)

; " ≈ @
; " ≈ F ≈ B3V @

B3V F = 3V @
3V F

e

T

O
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PDF of Uniform RV

27
10

R1 S = T1, S ∈ [0,1]
0, S ∉ [0,1]

?
]^

_^
3V 4 d4 = ?

h

i
3V 4 d4 = 1 ⋅ 1 = 1

0

1

! ∼ Unif(0,1) Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1
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Probability of Event
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0

1

! ∼ Unif(0,1)

< >

R1 S = T1, S ∈ [0,1]
0, S ∉ [0,1]

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

1. If 0 ≤ < and < ≤ > ≤ 1
; < ≤ " ≤ > = > − <

2. If < < 0 and 0 ≤ > ≤ 1
; < ≤ " ≤ > = >

3. If < ≥ 0 and > > 1
; < ≤ " ≤ > = > − <

4. If < < 0 and > > 1
; < ≤ " ≤ > = 1

Poll:   Slido.com/4694375 

A. All of them are correct
B. Only 1, 2, 4 are right 
C. Only 1 is right 
D. Only 1 and 2 are right 

É
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Probability of Event

30
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0

1

! ∼ Unif(0,1)

R1 S = T1, S ∈ [0,1]
0, S ∉ [0,1]

Non-negativity: 3V 4 ≥ 0 for all 4 ∈ ℝ

Normalization: ∫]^
_^3V 4 d4 = 1

; < ≤ " ≤ > = ?
`

a
3V 4 d4

; " = @ = ; @ ≤ " ≤ @ = ?
b

b
3V 4 d4 = 0

; " ≈ @ ≈ B3V @ = B
; " ≈ @
; " ≈ F ≈ B3V @

B3V F = 3V @
3V F11 I 0



PDF of Uniform RV

31
10

R1 S =

0

! ∼ Unif(0,0.5)

0.5

2 xeco I

O elsewhere

Sc dx I
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PDF of Uniform RV
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R1 S = T2, S ∈ [0,0.5]
0, S ∉ [0,0.5]

?
]^

_^
3V 4 d4 = ?

h

i
3V 4 d4 = 2 ⋅ 0.5 = 1

0

2

! ∼ Unif(0,0.5)

Density ≠ Probability

1

0.5

3V 4 ≫ 1 is possible!

Probability on [0,0.5] accumulates at 
twice the rate compared to Unif(0,1)

I



Uniform Distribution
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R1 S = Z
1

Q − P S ∈ [P, Q]
0 else

?
]^

_^
3V 4 d4 = > − < 1

> − < = 1

0

1
> − <

! ∼ Unif(P, Q)

P Q

no

b

fc dx b a L

p p
a
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3j 4 = S1, 4 ∈ [0,1]
0, 4 ∉ [0,1]

0

1

Example. L ∼ Unif(0,1)

10
0

+j 4 = ;(U ≤ 4) = V
0 4 ≤ 0
? 0 ≤ 4 ≤ 1
1 1 ≤ 4

Probability Density Function

Cumulative Distribution Function 

1

4

4

4 she

IIffy dx
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Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 2 is 
1! 7 = " 2 ≤ 7 = ∫"#

$ 3! * d*

35

By the fundamental theorem of Calculus R1 S = 2
23 ]1(S)

P
Ar



Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of 2 is 
1! 7 = " 2 ≤ 7 = ∫"#

$ 3! * d*

36

Therefore: , ! ∈ [P, Q] = ]1 Q − ]1(P)

By the fundamental theorem of Calculus R1 S = 2
23 ]1(S)

]1 is monotone increasing, since R1 S ≥ 0. That is ]1 ^ ≤ ]1 ` for ^ ≤ `

lim4→!6 ]1 P = , ! ≤ −∞ = 0 lim4→76 ]1 P = , ! ≤ +∞ = 1

O
a my fy x dx



From Discrete to Continuous

Discrete Continuous
PMF/PDF 41 S = , ! = S R1 S ≠ , ! = S = 0

CDF ]1 S = e
% 8 3

41(f) ]1 S = g
!6

3
R1 f `f

Normalization e
3
41 S = 1 g

!6

6
R1 S `S = 1

Expectation B h ! =e
3
h S 41(S) B h ! = g

!6

6
h S R1 S `S

DO
D O
WU

Totus'T

fye
a 2 Icydx I

O ow 2



Agenda

• Wrap-up of Poisson RVs
• Continuous Random Variables
• Probability Density Function 
• Cumulative Distribution Function
• Expectation and Variance of continuous r.v.
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Expectation of a Continuous RV

39

Definition. The expected value of a continuous RV ! is defined as

B[!] = g
!6

76
R1 S ⋅ S dS

Fact. B[P! + Q/ + ^] = PB[!] + QB[/] + ^ Proof follows same 
ideas as discrete case



Expectation of a Continuous RV

40

Definition. The expected value of a continuous RV ! is defined as

B[!] = g
!6

76
R1 S ⋅ S dS

Fact. B[P! + Q/ + ^] = PB[!] + QB[/] + ^

Definition. The variance of a continuous RV ! is defined as

Var ! = g
!6

76
R1 S ⋅ S − B[!] 9 dS = B[!9] − B[!]9

Proofs follow same 
ideas as discrete case



Expectation of a Continuous RV

41

Definition.

L[!] = m
!+

,+
n- o ⋅ o do

n. o = q1, o ∈ [0,1]
0, o ∉ [0,1]

Example. U ∼ Unif(0,1)

100

1

n. o ⋅ o = qo, o ∈ [0,1]
0, o ∉ [0,1] B[L] = 1

2 1
9 = 1

2

Area of triangle
100

1



Uniform Density – Expectation 
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R1 S = Z
1

Q − P S ∈ [P, Q]
0 else! ∼ Unif(P, Q)

![#] =



Uniform Density – Expectation 
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R1 S = Z
1

Q − P S ∈ [P, Q]
0 else! ∼ Unif(P, Q)

B[!] = g
!6

76
R1 S ⋅ S dS

= 1
Q − Pg4

:
S dS = 1

Q − P jS9
2

4

:

= 1
Q − P

Q9 − P9
2

= (Q − P)(P + Q)
2(Q − P) = P + Q

2



Uniform Density – Variance 

45

R1 S = Z
1

Q − P S ∈ [P, Q]
0 else! ∼ Unif(P, Q)

B[!9] =



Uniform Density – Variance 
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R1 S = Z
1

Q − P S ∈ [P, Q]
0 else! ∼ Unif(P, Q)

B[!9] = g
!6

76
R1 S ⋅ S9 dS

= 1
Q − Pg4

:
S9 dS = 1

Q − P jS;
3

4

:

= Q; − P;
3(Q − P)

= (Q − P)(Q9 + PQ + P9)
3(Q − P) = Q9 + PQ + P9

3



Uniform Density – Variance 
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! ∼ Unif(P, Q)
Y["d] = >d + <> + <d

3
Y["] = < + >

2

Var ! = B[!9] − B[!]9

= Q9 + PQ + P9
3 − P

9 + 2PQ + Q9
4

= 4Q9 + 4PQ + 4P9
12 − 3P

9 + 6PQ + 3Q9
12

= Q9 − 2PQ + P9
12 = Q − P 9

12



Uniform Distribution Summary
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R1 S = Z
1

Q − P S ∈ [P, Q]
0 else

0

1
> − <

! ∼ Unif(P, Q)

P Q

+V @ =
0 4 < <4 − <

> − < 4 ∈ [<, >]
1 4 > >

Y " = < + >
2

Var " = > − < d
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