CSE 312 Foundations of Computing II

Lecture 14: Quick wrapup of discrete RVs Continuous RVs no 8 pm office hours

Slido.com/4694375

Agenda

- Wrap-up of Discrete RVs <
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous RVs

Poisson Random Variables

Definition. A **Poisson random variable** *X* with parameter $\lambda \ge 0$ is such that for all i = 0, 1, 2, 3 ...,

$$P(X=i)=e^{-\lambda}\cdot\frac{\lambda^{\iota}}{i!}$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to Poi(λ)
- Poisson approximates Binomial when n is large,
 p is small, and np is moderate
- Sum of independent Poisson is still a Poisson

Zoo of Random Variables 🔊 🖓 🐂 🦙

$X \sim \text{Poisson}(\lambda)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$
$E[X] = \lambda$	E[X] = p	E[X] = np
$Var(X) = \lambda$	Var(X) = p(1-p)	Var(X) = np(1-p)
$X \sim \text{Geo}(p)$	$X \sim \operatorname{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k - 1}p$	$P(X = k) = \binom{k-1}{r-1} p^{r} (1-p)^{k-r}$	$P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$
$E[X] = \frac{1}{p}$	$E[X] = \frac{r}{n}$	$F[X] = n \frac{K}{n}$
$Var(X) = \frac{1-p}{p^2}$	$\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$	$Var(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$
		4

Negative Binomial Random Variables
P
Negative Binomial Random Variables
F
A discrete random variable X that models the number of independent trials
$$Y_i \sim \text{Ber}(p)$$
 before seeing the r^{th} success.
Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim \text{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p .
Notation: $X \sim \text{NegBin}(r, p)$
PMF: $P(X = k) = \begin{pmatrix} k-1 \\ r-1 \end{pmatrix} p^{r-1} (r-p)^{(k-1)-(r-1)} p = \binom{k-1}{r-1} p^r(r-p)^{r-1}$
Expectation: $\mathbb{E}[X] = \frac{r}{r}$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^{r} Z_i$ where $Z_i \sim \text{Geo}(p)$. X is called a Negative Binomial random variable with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$ PMF: $P(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$ Expectation: $\mathbb{E}[X] = \frac{r}{p}$ Variance: $\text{Var}(X) = \frac{r(1-p)}{p^2}$

6

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$ PMF: $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ Expectation: $\mathbb{E}[X] = n\frac{K}{N}$ Variance: $\text{Var}(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$

Hope you enjoyed the zoo! 🄝 🐄 😂 🦐 🦙 🦒

$X \sim \text{Unif}(a, b)$	$X \sim \operatorname{Ber}(p)$	$X \sim \operatorname{Bin}(n, p)$
$P(X=k) = \frac{1}{b - a + 1}$	P(X = 1) = p, P(X = 0) = 1 - p	$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$
$\mathbb{E}[X] = \frac{a+b}{2}$	$\mathbb{E}[X] = p$	$\mathbb{E}[X] = np$
$Var(X) = \frac{(b-a)(b-a+2)}{12}$	Var(X) = p(1-p)	$\operatorname{Var}(X) = np(1-p)$
$X \sim \text{Geo}(p)$	$X \sim \text{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$P(X = k) = (1 - p)^{k - 1}p$	$P(X = k) = \binom{k-1}{r-1} X \sim Po$	isson(λ) $\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$
$\mathbb{E}[X] = \frac{1}{p}$	$\mathbb{E}[X] = \frac{r}{p}$ $r(1 - r) \qquad P(X = i) = e$	$e^{-\lambda} \cdot \frac{\lambda^i}{i!}$
$\operatorname{Var}(X) = \frac{1}{p^2}$	$Var(X) = \frac{1}{p^2}$ $E[X] = \lambda$	$\frac{1(N-N)(N-N)}{N^2(N-1)}$
	$\operatorname{Var}(X) = \lambda$	8

Agenda

- Wrap-up of Poisson RVs
- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.

Often we want to model experiments where the outcome is not discrete.

Example – Lightning Strike

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every time within [0,1] is equally likely

– Time measured with infinitesimal precision.

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Lightning strikes a pole within a one-minute time frame

- *T* = time of lightning strike
- Every point in time within [0,1] is equally likely

Bottom line

- This gives rise to a different type of random variable
- P(T = x) = 0 for all $x \in [0,1]$
- Yet, somehow we want

$$+ \widehat{P(T \in [0,1])} = 1$$

$$P(T \in [\alpha, h]) = h$$

$$- P(T \in [a, b]) = b - a$$

• How do we model the behavior of *T*?

First try: A discrete approximation

$F_{\chi}(\omega) = \sum_{x \in \omega} P_{\chi}(x)$ A Discrete Approximation

Probability Mass Function PMF

 $\mathcal{N}_{\mathbf{X}} = \{ \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{2}{n} \}$

A Discrete Approximation

Probability Mass Function

x<0

 $\lim_{n\to\infty} P_X(x) = 0$

 $P_{X}(k) = P(X=k) = \frac{F_{x}(k) - F_{x}(k-1)}{k - (k-1)}$ = Z Px(w) probability density for $f_{\chi}(x) = \frac{d}{dx} F_{\chi}(x)$ $F_{\chi}(x) = \int f_{\chi}(w) dw$ $=P(X \leq x)$

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) \, dx = 1$ $P(a \le X \le b) = \int_a^b f_X(x) \, dx$

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$

Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) \, \mathrm{d}x = 0$$

Density
$$\neq$$
 Probability
 $f_X(y) \neq 0$ $P(X = y) = 0$

What $f_X(x)$ measures: The local *rate* at which probability accumulates

Definition. A continuous random variable *X* is defined by a probability density function (PDF) $f_X : \mathbb{R} \to \mathbb{R}$, such that

Non-negativity: $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ Normalization: $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ $P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x$ $P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(x) \, \mathrm{d}x = 0$ $P(X \approx y) \approx P\left(y - \frac{\epsilon}{2} \le X \le y + \frac{\epsilon}{2}\right) = \int_{y - \frac{\epsilon}{2}}^{y + \frac{\epsilon}{2}} f_X(x) \, \mathrm{d}x \approx \epsilon f_X(y)$ $\left(\frac{P(X \approx y)}{P(X \approx z)} \approx \frac{\epsilon f_X(y)}{\epsilon f_X(z)} = \frac{f_X(y)}{f_X(z)}\right)$

25

PDF of Uniform RV

Probability of Event

29
-

Probability of Event

PDF of Uniform RV

$X \sim \text{Unif}(0,0.5)$

0

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) \, dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx} F_X(x)$

Cumulative Distribution Function

Definition. The cumulative distribution function (cdf) of X is $F_X(\underline{a}) = P(X \le a) = \int_{-\infty}^{a} f_X(x) \, dx$

By the fundamental theorem of Calculus $f_X(x) = \frac{d}{dx} F_X(x)$ Therefore: $P(X \in [a, b]) = F_X(b) - F_X(a) = \int_{a}^{b} f_X(x) dx$

 F_X is monotone increasing, since $f_X(x) \ge 0$. That is $F_X(c) \le F_X(d)$ for $c \le d$

 $\lim_{a\to-\infty} F_X(a) = P(X \le -\infty) = 0 \quad \lim_{a\to+\infty} F_X(a) = P(X \le +\infty) = 1_{36}$

From Discrete to Continuous

Discrete	Continuous
$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
$F_X(x) = \sum_{t \le x} p_X(t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{N}} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
LOTUS	
CX OF XE	$\int c x dx = 1$
	Discrete $p_X(x) = P(X = x)$ $F_X(x) = \sum_{x \le x} p_X(t)$ $\sum_x p_X(x) = 1$ $\mathbb{E}[g(X)] = \sum_{x \in \mathcal{N}} g(x) p_X(x)$ $Lotus$

- Continuous Random Variables
- Probability Density Function
- Cumulative Distribution Function
- Expectation and Variance of continuous r.v.

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV *X* is defined as $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$

Fact. $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$

Proof follows same ideas as discrete case

Expectation of a Continuous RV

Definition. The **expected value** of a continuous RV *X* is defined as $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$ **Fact.** $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$ **Proofs follow same** ideas as discrete case **Definition.** The **variance** of a continuous RV *X* is defined as $Var(X) = \int_{-\infty}^{+\infty} f_X(x) \cdot (x - \mathbb{E}[X])^2 \, dx = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Definition.
$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, \mathrm{d}x$$

Uniform Density – Expectation

 $X \sim \text{Unif}(a, b)$

 $f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$

 $\mathbb{E}[X] =$

Uniform Density – Expectation

 $X \sim \text{Unif}(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

$$E[X] = \int_{-\infty}^{+\infty} f_X(x) \cdot x \, dx$$

= $\frac{1}{b-a} \int_a^b x \, dx = \frac{1}{b-a} \left(\frac{x^2}{2}\right) \Big|_a^b = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2}\right)$
= $\frac{(b-a)(a+b)}{2(b-a)} = \frac{a+b}{2}$

Uniform Density – Variance

 $X \sim \text{Unif}(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

 $\mathbb{E}[X^2] =$

Uniform Density – Variance

 $X \sim \text{Unif}(a, b)$

$$\mathbb{E}[X^2] = \int_{-\infty}^{+\infty} f_X(x) \cdot x^2 \, dx$$

= $\frac{1}{b-a} \int_a^b x^2 \, dx = \frac{1}{b-a} \left(\frac{x^3}{3}\right) \Big|_a^b = \frac{b^3 - a^3}{3(b-a)}$
= $\frac{(b-a)(b^2 + ab + a^2)}{3(b-a)} = \frac{b^2 + ab + a^2}{3}$

44

 $f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$

 $X \sim \text{Unif}(a, b)$

$$\mathbb{E}[X^2] = \frac{b^2 + ab + a^2}{3} \qquad \mathbb{E}[X] = \frac{a+b}{2}$$

$$Var(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$
$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$
$$= \frac{4b^{2} + 4ab + 4a^{2}}{12} - \frac{3a^{2} + 6ab + 3b^{2}}{12}$$
$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

