CSE 312

Foundations of Computing II

Lecture 12: Zoo of Discrete RVS part II Poisson Distribution

Slido.com/4694375

Midterm info

- Midterm info is posted on edstem
- I will post solutions to the practice midterm tomorrow.
- I will do a review in class next Friday.

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random variables
- Examples
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications
- Negative Binomial Random Variables
- Hypergeometric Random Variables

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let X be the number of corrupted bits.
What kind of random variable is this and what is $\mathbb{E}[X]$?

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What kind of random variable is this and what is $\mathbb{E}[X]$?

$$
\begin{gathered}
X \sim \operatorname{Gog}(p) \quad p=(0.999)^{1000} \\
E(X)=\frac{1}{p}
\end{gathered}
$$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random variables
- Examples
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications
- Negative Binomial Random Variables
- Hypergeometric Random Variables

Preview: Poisson

Model: \# events that occur in an hour

I har.

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is $3 t$
- Occurrence of events on disjoint time intervals is independent

Example - Modelling car arrivals at an intersection
$X=\#$ of cars passing through a light in 1 hour

Example - Model the process of cars passing through a light in 1 hour $X=\#$ cars passing through a light in 1 hour.

$$
\mathbb{E}[X]=3
$$

Assume: Occurrence of events on disjoint time intervals is independent

Approximation idea: Divide hour into n intervals of length $1 / n$

Assure each interval erttren 0 or 1 can arrives

$$
P=P(\text { con andes in intervals }) \quad E(x)=3
$$

$$
X \sim \operatorname{Bin}(n, p)
$$

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent. Know: $\mathbb{E}[X]=3$ for some given $\lambda>0$

What should p be?
This gives us n independent intervals Slido.com/4694375

Assume either zero or one car per interval
A. $3 / n$
B. $3 n$
C. 3
D. $3 / 60$
$p=$ probability car arrives in an interval

Example - Model the process of cars passing through a light in 1 hour

$X=\#$ cars passing through a light in 1 hour. Disjoint time intervals are independent.
Know: $\mathbb{E}[X]=\lambda$ for some given $\lambda>0$

Discrete version: n intervals, each of length $1 / n$.
In each interval, there is a car with probability $p=\lambda / n$ (assume ≤ 1 car can pass by)
Each interval is Bernoulli: $X_{i}=1$ if car in $i^{\text {th }}$ interval (0 otherwise). $P\left(X_{i}=1\right)=\lambda / n$
$X=\sum_{i=1}^{n} X_{i} \quad X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i} \\
& \text { indeed! } \mathbb{E}[X]=p n=\lambda
\end{aligned}
$$

Don't like discretization ${ }^{n} \quad p=\frac{\lambda}{n}$
X is $\underline{\left.\text { binomial } P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}\right) .}$

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& P(x=0)=\binom{n}{0}\left(\frac{\lambda}{n}\right)^{0}\left(1-\frac{\lambda}{n}\right)^{n-0}=\left(1-\frac{\lambda}{n}\right)^{n} \\
& \lim _{n \rightarrow \infty}\left(\frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(e^{-\lambda}\right)^{n}}=e^{-\lambda}\right. \\
& \begin{array}{l}
e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!} \\
a(1-x)
\end{array} \\
& P(x=1)=\underbrace{\binom{n}{1}\left(\frac{\lambda}{n}\right)^{\prime}}_{k \cdot \frac{\lambda}{n}} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n-1}} e^{-\frac{\pi n-1}{n}}) \lim _{n \rightarrow \infty}=\lambda e^{-\lambda}
\end{aligned}
$$

Don't like discretization

$$
X \text { is binomial } P(X=i)=\binom{n}{i}\left(\begin{array}{l}
\frac{\lambda}{n}
\end{array}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}
$$

We want now $n \rightarrow \infty$

$$
\begin{aligned}
& P(X=i)=\binom{n}{i}\left(\frac{\lambda}{n}\right)^{i}\left(1-\frac{\lambda}{n}\right)^{n-i}=\frac{n!}{(n-i)!n^{i}} \frac{\lambda^{i}}{i!}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-i} \\
& 14 \\
& \Omega_{x}=\left\{c_{1},\right\}_{1} \ldots
\end{aligned}
$$

- Suppose "events" happen, independently, at an average rate of λ per unit time.
- Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter $\lambda(\operatorname{denoted} X \sim \operatorname{Poi}(\lambda))$ and has distribution (PMF):

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Several examples of "Poisson processes":

- \# of cars passing through a traffic light in 1 hour
- \# of requests to web servers in an hour

Assume

- \# of photons hitting a light detector in a given interval fixed average rate
- \# of patients arriving to ER within an hour

Probability Mass Function

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Validity of Distribution

$$
\lambda \geqslant 0
$$

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \quad i=0,1,2, \ldots
$$

Is this a valid probability mass function?

$$
\sum_{i=0}^{10} e^{-\lambda} \frac{\lambda^{i}}{i!}=e^{-\lambda}\left(\sum_{i=0}^{i n} \frac{\lambda}{i!}\right.
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=e^{-\lambda} \underbrace{\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}}=e^{-\lambda} e^{\lambda}=e^{0}=1
$$

Validity of Distribution

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

We first want to verify that Poisson probabilities sum up to 1 .

Fact (Taylor series expansion):

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter $\lambda \geq 0$, then $\mathbb{E}[X]=$?

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=\varnothing}^{\infty} e^{-\lambda} \lambda^{i} \cdot\binom{0}{1!}$

$$
\begin{aligned}
e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i}}{(i-1)!} & =\lambda e^{-\lambda \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!}} \sum_{k-\infty}^{\left.\sum_{k-1}^{\infty} \frac{\left.\lambda^{k}\right|^{i=0}}{k!}\right)^{20}} \\
& -\lambda 0^{-\lambda} e^{-\lambda}
\end{aligned}
$$

Expectation

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson $\mathrm{R} V$ with parameter λ, then

$$
\mathbb{E}[X]=\lambda
$$

Proof. $\mathbb{E}[X]=\sum_{i=0}^{\infty} P(X=i) \cdot i=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!}$

$$
\begin{aligned}
& =\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda \sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}=1 \text { (see prior slides!) } \\
& =\lambda \cdot 1=\lambda
\end{aligned}
$$

Variance

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Theorem. If X is a Poisson RV with parameter λ, then $\operatorname{Var}(X)=\lambda$
Proof. $\mathbb{E}\left[X^{2}\right]=\sum_{i=0}^{\infty} P(X=i) \cdot i^{2}=\sum_{i=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \cdot i^{2}=\sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i}}{(i-1)!} i$
$=\lambda \sum_{i=1}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{i-1}}{(i-1)!} \cdot i=\lambda \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot(j+1)$
$=\lambda[\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \cdot j}+\underbrace{\sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}}]=\lambda^{2}+\lambda$
Similar to the previous proof
Verify offline.
$\longrightarrow \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda$

Agenda

- Zoo of Discrete RVs
- Uniform Random Variables, Part I
- Bernoulli Random Variables, Part I
- Binomial Random Variables, Part I
- Poisson Distribution
- Approximate Binomial distribution using Poisson distribution
- Applications
- Negative Binomial Random Variables
- Hypergeometric Random Variables

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Poisson approximates binomial when:
n is very large, p is very small, and $\lambda=n p$ is "moderate" e.g. $(n>20$ and $p<0.05)$, $(n>100$ and $p<0.1)$

Formally, Binomial approaches Poisson in the limit as
$n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $n p=\lambda$

Probability Mass Function - Convergence of Binomials

$$
\begin{aligned}
& \lambda=5 \\
& p=\frac{5}{n} \\
& n=10,15,20
\end{aligned}
$$

From Binomial to Poisson

$X \sim \operatorname{Bin}(n, p)$	$n p=\lambda$	$X \sim \operatorname{Poi}(\lambda)$
$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$	$p=\frac{\lambda}{n} \rightarrow 0$	$P(X=k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$
$E[X]=n p$		$E[X]=\lambda$
$\operatorname{Var}(X)=n p(1-p)$		$\operatorname{Var}(X)=\lambda$

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

Example -- Approximate Binomial Using Poisson

Consider sending bit string over a network

- Send bit string of length $n=10^{4}$
- Probability of (independent) bit corruption is $p=10^{-6}$

What is probability that message arrives uncorrupted?
Using $X \sim \operatorname{Poi}\left(\lambda=n p=10^{4} \cdot 10^{-6}=0.01\right)$

$$
P(X=0)=e^{-\lambda} \cdot \frac{\lambda^{0}}{0!}=e^{-0.01} \cdot \frac{0.01^{0}}{0!} \approx 0.9900498 \beta 4
$$

Using $Y \sim \operatorname{Bin}\left(10^{4}, 10^{-6}\right)$

$$
\begin{aligned}
& \left.10^{-0}\right) \\
& P(Y=0) \approx 0.9900498 / 29
\end{aligned}
$$

Sum of Independent Poisson RVs

Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. What kind of random variable is Z ?
Aka what is the "distribution" of Z ?

$$
Z \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $Z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda \cdot \frac{\lambda^{z}}{z!}}
$$

indep
More generally, let $X_{1} \sim \operatorname{Poi}\left(\lambda_{1}\right), \cdots, X_{n} \sim \operatorname{Poi}\left(\lambda_{n}\right)$ such that $\lambda=\Sigma_{i} \lambda_{i}$.
Le $Z=\Sigma_{i} X_{i}$

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Sum of Independent Poisson RVs

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

$$
P(F)=\sum_{i=1}^{n} P\left(F \cap E_{i}\right)
$$

 Slido.com/4694375

1. $P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j)$
\Rightarrow 2. $P(Z=z)=\Sigma_{j=0}^{\infty} P(X=j, Y=z-j)$
2. $P(Z=z)=\sum_{j=0}^{z} P(Y=z-j \mid X=j) P(X=j)$
A. All of them are right
3. $P(Z=z)=\sum_{j=0}^{Z} P(Y=z-j \mid X=j)$

$$
\begin{aligned}
& \text { LTP } \quad P(z=2)=\sum_{i=0} P(i=2 \cap x=j) \\
& =\sum_{j=0}^{50} P(X=j, Y=2-j)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{2} P(x=j, y=2 j) \\
& =\sum_{j=0}^{2} P(y=2-j \mid x-j) P(x=j) \\
& =\sum_{j=0}^{2} P(x=j) P(y=2-j) \\
& =\sum_{j=0}^{=0} e^{-\lambda_{1}} \frac{\lambda_{1}^{j}}{j!} e^{-\lambda} \frac{\lambda_{2}^{2-j}}{(2-j)!} \\
& =\frac{e^{-\lambda_{1}} e^{-\lambda_{2}}}{2!} \sum_{j=0}^{2} \frac{z!}{j!(2 j)!} \lambda_{1}^{j} \lambda_{2}^{2-j} \\
& \left.=\frac{e^{-\left(\lambda_{1} \lambda_{2}\right)}}{2!} \frac{\sum_{j=0}^{2}\binom{2}{j} \lambda_{1}^{j} \lambda_{2}^{2-j}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}\right]_{B T} . \\
& =e^{-\left(\lambda_{1}+\lambda_{2}\right)} \frac{\left(\lambda_{1}+\lambda_{2}\right)^{2}}{2!}
\end{aligned}
$$

Theorem. Let $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ such that $\lambda=\lambda_{1}+\lambda_{2}$.
Let $Z=X+Y$. For all $z=0,1,2,3 \ldots$,

$$
P(Z=z)=e^{-\lambda} \cdot \frac{\lambda^{z}}{z!}
$$

Proof

$$
P(Z=z)=\sum_{j=0}^{z} P(X=j, Y=z-j) \quad \text { Law of total probability }
$$

Proof

$$
\begin{aligned}
& P(Z=z)=\sum_{j=0}^{Z} P(X=j, Y=z-j) \quad \text { Law of total probability } \\
& =\sum_{j=0}^{Z} P(X=j) P(Y=z-j)=\Sigma_{j=0}^{z} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{j}}{j!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{2}^{z-j}}{z-j!} \quad \text { Independence } \\
& =e^{-\lambda_{1}-\lambda_{2}}\left(\sum_{j=0}^{z} \cdot \frac{1}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \\
& =e^{-\lambda}\left(\sum_{j=0}^{Z} \frac{z!}{j!z-j!} \cdot \lambda_{1}^{j} \lambda_{2}^{z-j}\right) \frac{1}{z!} \quad \\
& =e^{-\lambda} \cdot\left(\lambda_{1}+\lambda_{2}\right)^{z} \cdot \frac{1}{z!}=e^{-\lambda} \cdot \lambda^{z} \cdot \frac{1}{z!} \quad \begin{array}{ll}
\text { Binomial } & \text { Theorem }
\end{array}
\end{aligned}
$$

Poisson Random Variables

Definition. A Poisson random variable X with parameter $\lambda \geq 0$ is such that for all $i=0,1,2,3 \ldots$,

$$
P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

General principle:

- Events happen at an average rate of λ per time unit
- Number of events happening at a time unit X is distributed according to $\operatorname{Poi}(\lambda)$
- Poisson approximates Binomial when n is large, p is small, and $n p$ is moderate
- Sum of independent Poisson is still a Poisson

$$
X \sim \operatorname{Poisson}(\lambda)
$$

$$
\begin{aligned}
& P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!} \\
& E[X]=\lambda \\
& \operatorname{Var}(X)=\lambda
\end{aligned}
$$

$$
X \sim \operatorname{Geo}(p)
$$

$$
P(X=k)=(1-p)^{k-1} p
$$

$$
E[X]=\frac{1}{p}
$$

$$
\operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

$$
X \sim \operatorname{Ber}(p)
$$

$$
\begin{aligned}
& P(X=1)=p, P(X=0)=1-p \\
& E[X]=p \\
& \operatorname{Var}(X)=p(1-p)
\end{aligned}
$$

$$
\begin{gathered}
X \sim \operatorname{NegBin}(r, p) \\
P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\
E[X]=\frac{r}{p} \\
\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{gathered}
$$

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& E[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
X \sim \operatorname{HypGeo}(N, K, n)
$$

$$
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{K}\binom{N}{n},
$$

$$
E[X]=n \frac{K}{N}
$$

$$
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
$$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $\mathrm{Z}_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$

PMF: $P(X=k)=$

Expectation: $\mathbb{E}[X]=$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_{i} \sim \operatorname{Ber}(p)$ before seeing the $r^{\text {th }}$ success.
Equivalently, $X=\sum_{i=1}^{r} Z_{i}$ where $\mathrm{Z}_{i} \sim \operatorname{Geo}(p)$.
X is called a Negative Binomial random variable with parameters r, p.
Notation: $X \sim \operatorname{NegBin}(r, p)$
PMF: $P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$
Expectation: $\mathbb{E}[X]=\frac{r}{p}$
Variance: $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Hypergeometric Random Variables

A discrete random variable X that models the number of successes in n draws (without replacement) from N items that contain K successes in total. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \operatorname{HypGeo}(N, K, n)$
PMF: $P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
Expectation: $\mathbb{E}[X]=n \frac{K}{N}$
Variance: $\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}$

$$
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
\mathbb{E}[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
$$

$X \sim \operatorname{Ber}(p)$
$P(X=1)=p, P(X=0)=1-p$
$\mathbb{E}[X]=p$
$\operatorname{Var}(X)=p(1-p)$

$$
X \sim \operatorname{Bin}(n, p)
$$

$$
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mathbb{E}[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

$$
\begin{aligned}
& P(X=k)=(1-p)^{k-1} p \\
& \mathbb{E}[X]=\frac{1}{p} \\
& \operatorname{Var}(X)=\frac{1-p}{p^{2}}
\end{aligned}
$$

$X \sim \operatorname{NegBin}(r, p)$	$X \sim \operatorname{HypGeo}(N, K, n)$
$P(X=k)=\left(\begin{array}{ll}k-1 & \\ r- & X \sim \operatorname{Poisson}(\lambda)\end{array}\right.$	
$\mathbb{E}[X]=\frac{r}{p}$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$
$\operatorname{Var}(X)=\frac{r(1-x}{p^{2}}$	$P(X=i)=e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$
$E[X]=\lambda$	$\frac{\ddots(N-K)(N-n)}{N^{2}(N-1)}$
$\operatorname{Var}(X)=\lambda$	39

