CSE 312

Foundations of Computing II

Lecture 12: Finish up Bloom Filters, Zoo of Discrete RVs, part I

Slido.com/4694375

> A review Fuday
B no

Agenda

- Bloom Filters Recap \& Analysis
- Zoo of Discrete RVs
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings $\quad|U| \approx 2^{128}$
$S=$ subset of strings of interest

$$
|S| \approx 1000
$$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$-adds $x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Combine with fallback mechanism - can distinguish false positives from true positives with extra cost

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array

0					
$\left.\begin{array}{\|l\|l\|l\|l\|}\hline t_{1} & 1 & 0 & 1\end{array}\right)$	0	0			
t_{2}	0	1	0	0	1
t_{3}	1	0	0	1	0

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$

Bloom Filters - Three operations

t_{1}	1	0	1	0	0
t_{2}	0	1	0	0	1
t_{3}	1	0	0	1	0

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function } \operatorname{INITIA\operatorname {AIZE}(k,m)} \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

$$
\begin{aligned}
& \text { function } \operatorname{ADD}(x) \\
& \text { for } i=1, \ldots, k \text { : do } \\
& t_{i}\left[h_{i}(x)\right]=1 \\
& \hline
\end{aligned}
$$

- Check if $x \in S$

```
function CONTAINS(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```


Bloom Filters - Initialization

Bloom Filters: Example

Bloom filter \boldsymbol{t} of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function INITIALIZE(k,m)
    for }i=1,\ldots,k\mathrm{ : do
        ti
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Add

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$ h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS (x) return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Returns True if the bit vector t_{i} for each hash function has bit 1 at index determined by $h_{i}(x)$,
Returns False otherwise

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS (x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINS}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")				
True	True		$\begin{aligned} & h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \end{aligned}$				
		Index   $\rightarrow$	0	1	2	3	4
		$t_{1}$	0	0	1	0	0
		$t_{2}$	0		0	0	0
		$t_{3}$	0	0	0	0	1

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function co/inins \((x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==\)```	$t_{k}\left[h_{k}(x\right.$					
True True			is			
	Index \rightarrow	0	1	2	3	4
	t_{1}	0	0	1	0	0
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINS}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")			
True True	True					
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly)						
						0
	$\mathrm{t}_{2}$	0	1	0	0	0
	$\mathrm{t}_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
add("totallynotsuspicious.com")
function $\operatorname{ADD}(x)$

$$
\begin{gathered}
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$

add("totallynotsuspicious.com") $h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$$
\begin{aligned}
& \text { function } \operatorname{ADD}(x) \\
& \text { for } i=1, \ldots, k \text { : do } \\
& t_{i}\left[h_{i}(x)\right]=1
\end{aligned}
$$

add("totallynotsuspicious.com")
$h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$
$h_{2}$ ("totallynotsuspicious.com") $\rightarrow 0$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do $t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com") $h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$ $h_{2}$ ("totallynotsuspicious.com") $\rightarrow 0$ $h_{3}$ ("totallynotsuspicious.com") $\rightarrow 4$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do $t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com") $h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$ $h_{2}$ ("totallynotsuspicious.com") $\rightarrow 0$ $h_{3}$ ("totallynotsuspicious.com") $\rightarrow 4$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
``` contains("verynormalsite.com")
\(h_{1}\) ("verynormalsite.com") \(\rightarrow 2\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Index \\
\(\rightarrow\)
\end{tabular} & 0 & 1 & 2 & 3 & 4 \\
\hline\(t_{1}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(t_{2}\) & 1 & 1 & 0 & 0 & 0 \\
\hline\(t_{3}\) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters: False Positives}

Bloom filter t of length \(\boldsymbol{m}=5\) that uses \(\boldsymbol{k}=3\) hash functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { function } \operatorname{contains}(x) \\
& \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
\end{aligned}
\]} & \multicolumn{5}{|l|}{contains("verynormalsite.com")} \\
\hline \multirow[t]{5}{*}{True} & \multirow[t]{5}{*}{True} & \multicolumn{5}{|c|}{\begin{tabular}{l}
\(h_{1}\) ("verynormalsite.com") \(\rightarrow 2\) \\
\(h_{2}\) ("verynormalsite.com") \(\rightarrow 0\)
\end{tabular}} \\
\hline & & 0 & 1 & 2 & 3 & 4 \\
\hline & & 0 & 1 & 1 & 0 & 0 \\
\hline & & 1 & 1 & 0 & 0 & 0 \\
\hline & & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters: False Positives}

Bloom filter t of length \(\boldsymbol{m}=5\) that uses \(\boldsymbol{k}=3\) hash functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{```
function \(\operatorname{contains}(x)\)
    return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)
```} & \multicolumn{4}{|l|}{contains("verynormalsite.com")} \\
\hline \multirow[t]{6}{*}{True True} & \multicolumn{2}{|r|}{True} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& h_{1}(\text { "verynormalsite.com") } \rightarrow 2 \\
& h_{2}(\text { "verynormalsite.com") } \rightarrow 0
\end{aligned}
\]} \\
\hline & \multicolumn{6}{|c|}{\(h_{3}(\) (verynormalsite.com") \(\rightarrow 4\)} \\
\hline & \begin{tabular}{l}
Index \\
\(\rightarrow\)
\end{tabular} & 0 & 1 & 2 & 3 & 4 \\
\hline & \(t_{1}\) & 0 & 1 & 1 & 0 & 0 \\
\hline & \(t_{2}\) & 1 & 1 & 0 & 0 & 0 \\
\hline & \(t_{3}\) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Bloom Filters: False Positives}

Bloom filter t of length \(\boldsymbol{m}=5\) that uses \(\boldsymbol{k}=3\) hash functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
function \(\operatorname{CONTAINs}(x)\)
 return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1\)
``` & \[
t_{k}\left[h_{k}(x)\right]
\] & \multicolumn{5}{|c|}{contains("verynormalsite.com")} \\
\hline \multirow[t]{2}{*}{True True} & \multicolumn{2}{|l|}{True} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& h_{1}(\text { "verynormalsite.com") } \rightarrow 2 \\
& h_{2} \text { ("verynormalsite.com") } \rightarrow 0 \\
& h_{3} \text { ("verynormalsite.com") } \rightarrow 4
\end{aligned}
\]} \\
\hline & Index & 0 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Since all conditions satisfied, returns True (incorrectly)}} \\
\hline & & & & & & \\
\hline & \(\mathrm{t}_{2}\) & 1 & 1 & 0 & 0 & 0 \\
\hline & \(\mathrm{t}_{3}\) & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Analysis: False positive probability}


Question: For an element \(x \in U\), what is the probability that contains \((x)\) returns true if \(\operatorname{add}(x)\) was never executed before?

Probability over what?! Over the choice of the \(\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}\)
Assumptions for the analysis (somewhat stronger than for ordinary hashing):
- Each \(\mathbf{h}_{i}(x)\) is uniformly distributed in \([m]\) for all \(x\) and \(i\)
- Hash function outputs for each \(\mathbf{h}_{i}\) are mutually independent (not just in pairs)
- Different hash functions are independent of each other


False positive probability - Events
Assume we perform \(\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)\)
\[
\text { is } x \in S \text { ? }
\]

\[
+\operatorname{contains}(x) \text { for } x \notin\left\{x_{1}, \ldots, x_{n}\right\}
\]

Event \(E_{i}\) holds of \(\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}\)

\(\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}\) independent

False positive probability - Events
Event \(E_{i}\) holds of \(\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}\)
\begin{tabular}{|c|c|c|c|c|c|}
\(t_{1}\) & 1 & 0 & 1 & 0 & 0 \\
\hline\(t_{2}\) & 0 & 1 & 0 & 1 & 1 \\
\hline\(t_{3}\) & 1 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

Evert \(E_{i}^{c}\) holds of \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c}\right)=\sum_{\text {LIP }}^{m} \frac{1}{m} P\left(\mathbf{h}_{i}(x)=z\right) \quad \frac{\left.h^{\prime}\left(E_{i}^{c}\right) \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)}{h_{i}(x)}
\]
\(P\left(h_{i}\left(x_{1}\right) \neq 2\right)=\left(1-\frac{1}{m}\right)\)
\(E:\)
\(h_{i}(x)=h_{i}\left(x_{1}\right)\) N \(h_{i}(x)=h_{i}\left(x_{2}\right)\)

False positive probability - Events

Event \(E_{i}^{c}\) holds iff \(\left.\mathbf{h}_{i}(x)\right) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
\]


\section*{False positive probability - Events}

Event \(E_{i}^{c}\) holds iff \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
\]
\[
\begin{aligned}
& \text { Independence of values } \\
& \text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{aligned} \longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)
\]

Outputs of \(\boldsymbol{h}_{i}\) uniformly spread

\section*{False positive probability - Events}

Event \(E_{i}^{c}\) holds iff \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
\]
\[
\begin{aligned}
& \text { Independence of values } \\
& \text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{aligned} \longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)
\]

Outputs of \(\boldsymbol{h}_{i}\) uniformly spread
\[
\begin{aligned}
& \text { tputs of } \boldsymbol{h}_{i} \text { uniformly spread }=\prod_{j=1}^{n}\left(1-\frac{1}{m}\right)=\left(1-\frac{1}{m}\right)^{n} \\
& P P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)=\left(1-\frac{1}{m}\right)^{n}
\end{aligned}
\]

\section*{False positive probability - Events}

Event \(E_{i}\) holds iff \(\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}\)
\(\longrightarrow \quad\)\begin{tabular}{|c|c|c|c|c|c|}
\(t_{1}\) & 1 & 0 & 1 & 0 & 0 \\
\hline\(t_{2}\) & 0 & 1 & 0 & 1 & 1 \\
\hline\(t_{3}\) & 1 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

Event \(E_{i}^{c}\) holds iff \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)\) and \(\ldots\) and \(\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)\)
\[
P\left(E_{i}^{c}\right)=\left(1-\frac{1}{m}\right)^{n}
\]
\[
\Rightarrow \frac{\mathrm{FPR}}{\prod^{n}}=\prod_{i=1}^{k} \underbrace{\left(\frac{\left.1-P\left(E_{i}^{c}\right)\right)}{\left(1-E_{i}\right)}\right.}_{1-\left(1-\frac{1}{m}\right)^{n}}=
\]
\[
\left.1-\frac{1}{n}\right)^{n}
\]

False Positivity Rate_- Example
\[
\operatorname{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
\]


\section*{Comparison with Hash Tables - Space}
- Google storin 5 million URLs, each URL 40 bytes.
- Bloom filter with \(k=30\) and \(m=2,500,000\)


\section*{Bloom Filter}
\(2,500,000 \times 30=75,000,000\) bits
\(<10 \mathrm{MB}\)

\section*{102,000}

\section*{Time}


\section*{500}

2 Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 secondsto do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is \(3 \% \quad 0.5\) seconds DB lookup


\section*{Bloom Filters typical of....}
... randomized algorithms and randomized data structures.
- Simple
- Fast
- Efficient
- Elegant
- Useful!


CSE 312
Foundations of Computing II
Zoo of Discrete RVs, part I

Slido.com/4694375

\section*{Motivation for "Named" Random Variables}

Random Variables that show up all over the place.
- Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:
- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

\section*{}
\[
\begin{gathered}
X \sim \operatorname{Unif}(a, b) \\
P(X=k)=\frac{1}{b-a+1} \\
\mathbb{E}[X]=\frac{a+b}{2} \\
\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}
\end{gathered}
\]
\[
X \sim \operatorname{Ber}(p)
\]
\(X \sim \operatorname{Ber}(p)\)
\(P(X=1)=p, P(X=0)=1-p\)
\(\mathbb{E}[X]=p\)
\(\operatorname{Var}(X)=p(1-p)\)
\[
P(X=1)=p, P(X=0)=1-p
\]
\[
\mathbb{E}[X]=p
\]
\[
\operatorname{Var}(X)=p(1-p)
\]
\[
\begin{aligned}
& X \sim \operatorname{NegBin}(r, p) \\
& P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\
& \mathbb{E}[X]=\frac{r}{p} \\
& \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{aligned}
\]
\[
X \sim \operatorname{Bin}(n, p)
\]
\[
\begin{aligned}
& P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \mathbb{E}[X]=n p \\
& \operatorname{Var}(X)=n p(1-p)
\end{aligned}
\]
\[
X \sim \operatorname{HypGeo}(N, K, n)
\]
\[
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
\]
\[
\mathbb{E}[X]=n \frac{K}{N}
\]
\[
\operatorname{Var}(X)=n \frac{K(N-K)(N-n)}{N^{2}(N-1)}
\]

\section*{Agenda}
- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

\section*{Discrete Uniform Random Variables}

A discrete random variable \(X\) equally likely to take any (integer) value between integers \(a\) and \(b\) (inclusive), is uniform.
Notation: \(X \sim U \operatorname{Unif}(a, b)\)


Example: value shown on one roll of a fair die is Uni (1,6)
- \(P(X=i)=1 / 6\)
- \(\mathbb{E}[X]=7 / 2\)
- \(\operatorname{Var}(X)=35 / 12\)


\section*{Discrete Uniform Random Variables}

A discrete random variable \(X\) equally likely to take any (integer) value between integers \(a\) and \(b\) (inclusive), is uniform.

Notation: \(X \sim \operatorname{Unif}(a, b)\)
PMF: \(\mathrm{P}(X=i)=\frac{1}{b-a+1}\)
Expectation: \(\mathbb{E}[X]=\frac{a+b}{2}\)
Variance: \(\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}\)

Example: value shown on one roll of a fair die is \(\operatorname{Unif}(1,6)\) :
- \(P(X=i)=1 / 6\)
- \(\mathbb{E}[X]=7 / 2\)
- \(\operatorname{Var}(X)=35 / 12\)


\section*{Agenda}
- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

\section*{Bernoulli Random Variables}

A random variable \(X\) that takes value 1 ("Success") with probabilit) \(p\), and 0 ("Failure") otherwise. \(X\) is called a Bernoulli random variable.
Notation: \(X \sim \operatorname{Ber}(p)\)
PMF: \(P(X=1)=p, P(X=0)=1-p\)
Expectation: \(E(X)=P\)
Variance:


\section*{Bernoulli Random Variables}


A random variable \(X\) that takes value 1 ("Success") with probability \(p\), and 0 ("Failure") otherwise. \(X\) is called a Bernoulli random variable.
Notation: \(X \sim \operatorname{Ber}(p)\)
PMF: \(P(X=1)=p, P(X=0)=1-p\)
Expectation: \(\mathbb{E}[X]=p \quad\) Note: \(\mathbb{E}\left[X^{2}\right]=p\)
Variance: \(\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)\)
Examples:
- Coin flip
- Randomly guessing on a MC test question

A server in a cluster fails
Whether or not a particular share of a particular stock pays off or not
- Any indicator r.v.

\section*{Agenda}
- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

\section*{Binomial Random Variables}

\section*{Xis cllindp.}

A discrete random variable \(X=\sum_{i=1}^{n} Y_{i}\) where each \(Y_{i} \sim \operatorname{Ber}(p)\).
Counts number of successes in \(n\) independent trials, each with probability \(p\) of success.
\(X\) is a Binomial random variable

\section*{Examples:}
- \# of heads in \(n\) indep coin flips
- \# of 1 s in a randomly generated n
 bit string
- \# of servers that fail in a cluster of \(n\) computers
- \# of bit errors in file written to disk
- \# of elements in a bucket of a large hash table
- \# of \(n\) different stocks that "pay off"
\(k \in\{0,1, \ldots, n\}\)
Poll:
Slido.com/4694375
\[
P(X=k)=
\]
A. \(p^{k}(1-p)^{n-k}\)
B. \(n p\)
C. \(\binom{n}{k} p^{k}(1-p)^{n-k}\)
D. \(\binom{n}{n-k} p^{k}(1-p)^{n-k}\)

\section*{Binomial Random Variables}

A discrete random variable \(X=\sum_{i=1}^{n} Y_{i}\) where each \(Y_{i} \sim \operatorname{Ber}(p)\). Counts number of successes in \(n\) independent trials, each with probability \(p\) of success.
\(X\) is a Binomial random variable

Notation: \(X \sim \operatorname{Bin}(n, p)\)
PMF: \(P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}\)

\section*{Expectation:}

Variance:

\section*{Binomial Random Variables}

A discrete random variable \(X=\sum_{i=1}^{n} Y_{i}\) where each \(Y_{i} \sim \operatorname{Ber}(p)\). Counts number of successes in \(n\) independent trials, each with probability \(p\) of success.
\(X\) is a Binomial random variable

Notation: \(X \sim \operatorname{Bin}(n, p)\)
PMF: \(P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}\)
Expectation: \(\mathbb{E}[X]=n p\)
Variance: \(\operatorname{Var}(X)=n p(1-p)\)

\section*{Mean, Variance of the Binomial} "i.i.d." is a commonly used phrase.
It means "independent \& identically distributed"
If \(Y_{1}, Y_{2}, \ldots, Y_{n} \sim \operatorname{Ber}(p)\) and independent (i.i.d.), then \(X=\sum_{i=1}^{n} Y_{i}, \quad X \sim \operatorname{Bin}(n, p)\)

Claim \(\mathbb{E}[X]=n p\)
\[
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n \mathbb{E}\left[Y_{1}\right]=n p
\]

Claim \(\operatorname{Var}(X)=n p(1-p)\)
\[
\begin{array}{r}
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)=n p(1-p) \\
Y_{i}^{\prime} \text { 's are alk mutually indep. }
\end{array}
\]

\section*{Binomial PMFs}


PMF for \(X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 5})\)

PMF for \(X \sim \operatorname{Bin}(\mathbf{1 0 , 0 . 2 5})\)

\section*{Binomial PMFs}


PMF for \(\mathbf{X} \sim \operatorname{Bin}(30,0.5)\)

PMF for \(X \sim \operatorname{Bin}(30,0.1)\)

\section*{Agenda}
- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables

\section*{Geometric Random Variables}


A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(\underline{p})\) before seeing the first success.
\(X\) is called a Geometric random variable with parameter \(p\).

Notation: \(X \sim \operatorname{Geo}(p)\)
MF: \(P(X=k)=(1-p)^{k-1} p\)

\section*{Examples:}
- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

\section*{Geometric Random Variables}

A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(p)\) before seeing the first success.
\(X\) is called a Geometric random variable with parameter \(p\).

Notation: \(X \sim \operatorname{Geo}(p)\)
PMF: \(P(X=k)=(1-p)^{k-1} p\)
Expectation: \(\mathbb{E}[X]=\frac{1}{p}\)
Variance: \(\operatorname{Var}(X)=\frac{1-p}{p^{2}}\)

\section*{Examples:}
- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it

\section*{Agenda}
- Bloom Filters Example \& Analysis
- Zoo of Discrete RVs, Part I
- Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- More examples

\section*{Example}

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits).
Let \(X\) be the number of corrupted bits.
What kind of random variable is this and what is \(\mathbb{E}[X]\) ?
```

Poll:
Slido.com/4694375
a. 1022.99
b. }1.02
c. 1.02298
d. 1

```

\section*{Binomial Random Variables}

A discrete random variable \(X=\sum_{i=1}^{n} Y_{i}\) where each \(Y_{i} \sim \operatorname{Ber}(p)\). Counts number of successes in \(n\) independent trials, each with probability \(p\) of success.
\(X\) is a Binomial random variable

Notation: \(X \sim \operatorname{Bin}(n, p)\)
PMF: \(P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}\)
Expectation: \(\mathbb{E}[X]=n p\)
Variance: \(\operatorname{Var}(X)=n p(1-p)\)

\section*{Example: Music Lessons}

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let \(X\) be the number of times you have to play the song from the start. What kind of random variable is this and what is \(\mathbb{E}[X]\) ?

\section*{Geometric Random Variables}

A discrete random variable \(X\) that models the number of independent trials \(Y_{i} \sim \operatorname{Ber}(p)\) before seeing the first success.
\(X\) is called a Geometric random variable with parameter \(p\).

Notation: \(X \sim \operatorname{Geo}(p)\)
PMF: \(P(X=k)=(1-p)^{k-1} p\)
Expectation: \(\mathbb{E}[X]=\frac{1}{p}\)
Variance: \(\operatorname{Var}(X)=\frac{1-p}{p^{2}}\)

\section*{Examples:}
- \# of coin flips until first head
- \# of random guesses on MC questions until you get one right
- \# of random guesses at a password until you hit it```

