CSE 312
Foundations of Computing li

Lecture 11: Wrap up independence or RVs + Bloom Filters

Midterm Monday, Feb 13 at 9:30. Info later today

Anonymous questions: www.slido.com/2671111



Agenda

* Review: Variance and Independent Random Variables @
* Properties of Independent Random Variables
* An Application: Bloom Filters!



Variance - Properties

 Definition. The variance of a (discrete) RV X is

Var(X) = E[(X — E[X])?] = ¥, px (%) - (x — E[X])?

_____________________________________________________________________________________________________________________________________________________



. The variance of a (discrete) RV X is
Questions i

Var(X) = E[(X — E[X]?] = X, px(x) - (x — E[X])?

Can the variance of a random variable be negative?

Is Var(X + 5) = Var (X) + 5?2

s it true that if Var(X) = 0, then X is a constant?

What is the relationship between E(X?) and [E(X)]? ?



Random Variables and Independence ,
Comma is shorthand for AND

____________________________________________________________________________________________________________________________________________________________________

' Definition. Two random variables X, Y are (mutually) independent if
forallx, y,

PX=xY=y)=PX=x) -P(Y =y)

_____________________________________________________________________________________________________________________________________________________________________

Definition. The random variables X, ..., X,, are (mutually) independent if
forall xq, ..., Xy, |

P(Xl = X1, ...,Xn — Xn) — P(Xl — Xl) P(Xn — Xn)

Note: No need to check for all subsets, but need to check for all outcomes!




Agenda

* Review: Variance and Independent Random Variables
* Properties of Independent Random Variables @
* An Application: Bloom Filters!



Important Facts about Independent Random Variables

___________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________

Corollary. If X;, X;, ..., X, mutually independent,

Var <Zn: Xl-> = zn: Var(X;)

=1 I



Example - Coin Tosses

We flip n independent coins, each one heads with probability p

oy 2L i outcome is heads - Fact.Z=37_.X;
‘|0, i"outcome s tails. .
- Z = number of heads - P(X;=1) =p
. PX;=0)=1-p i
Whatis E[Z]? Whatis Var(Z)? B |
L PZ=k) =

______________________________



Example - Coin Tosses

We flip n independent coins, each one heads with probablllty p

1, i*" outcome is heads  Fact.Z=Y".X
0, i™ outcome is tails. S
- Z = number of heads - \ P(X;=1) =p
PXi=0)=1-p

Whatis E[Z]? Whatis Var(Z)? — :.'.'I.'I.'.'iii_'I_'IiI_'_'Iif_'_'f_'jjj_'_'j_'j_'_'jjjjjjj:

Note: X3, ..., X,, are mutually independent! [Verify it formally!]

‘ Var(Z) = z Var(X;) =n-p(1—p)  NoteVar(X)) =p(1—p)
=1




(Not Covered) Proof of E[X - Y] = E[X] - E[Y]

___________________________________________________________________________________________________________________________________________________

Proof Let x;,y;,i = 1,2, ...be the possible values of X, Y.

L Y> independence
=szi Vi PX=x)-P(Y =)
iJ

=in P(X =x;) - (Z}’j'P(Y=Yj)>

i 7
= E[X] - E[Y]

Note: NOT true in general; see earlier example E[X?]#E[X]?




(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

___________________________________________________________________________________________________________________________________________________

Proof Var(X +Y)
= E[(X +Y)?] — (E[X + Y])? _— linearity
= E[X? 4+ 2XY + Y?] — (E[X] + E[Y])?
= E[X2] + 2 E[XY] + E[Y?] — (E[X]? + 2 E[X] E[Y] + E[Y]?)
= E[X?] — E[X]? + E[Y?] — E[Y]? + 2 E[XY] — 2 E[X] E[Y]
=Var(X) + Var(Y) + 2 E[XY] — 2 E[X] E[Y]

N—

equal by independence

= Var(X) + Var(Y)
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Agenda

* Review: Variance and Independent Random Variables
* Properties of Independent Random Variables
* An Application: Bloom Filters! @
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Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings |U| =~ 218
S = subset of strings of interest S| ~ 1000

Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € S?”
' forany x € U.

2. Minimal storage requirements.
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Naive Solution | - Constant Time

—| A :{1 ifx €S

Idea: Represent S as an array A with 22 entries. 0 ifx&sS

Lo 2 K
1 0 1 0 1 0 0

S=102,.., K

Membership test: To check. x € S just check whether A[x]| = 1.
— constant time! «'E %:)

Storage: Require storing 2'° bits, even for small S. ‘\é @
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Naive Solution Il - Small Storage

Idea: Represent S as a list with |S| entries.

S =1{0.2,..,K ‘ o‘/\ 2 T/\ {\ K.

Storage: Grows with |S| only ,\g @

Membership test: Check x € S requires time linearin |S|

(Can be made logarithmic by using a tree) _U% @
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Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether A[h(x)] = x

Storage: m elements (size of array)

hash function h: U —» [m]

17



Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct x,y € S,
i.e., two elements of set map to the same location

12 (3|4

Common solution: chaining — at each

5
location (bucket) in the table, keep
h(x1 ) = h(x3)

linked list of all elements that hash there.



Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether A[h(x)] = x

Storage: m elements (size of array) %
O
O
Challenge 1: Ensure
O 8

h(x) # h(y) for
most x,y € S

Challenge 2: Ensure
m = 0(|S])

\
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Good hash functions to keep collisions low

* The hash function his good iff it
— distributes elements uniformly across the m array locations so that

— pairs of elements are mapped independently

““Universal Hash Functions” - see CSE 332
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Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and

lookup times are small. In some cases, |S| is huge,

* However, they need at least as much / or not known a-priori ...
space as all the data being stored, —

e, m = Q(S]) —
\ Can we do

better!?



Bloom Filters
to the rescue

(Named after Burton Howard Bloom)



Bloom Filters — Main points

Probabilistic data structure.

Close cousins of hash tables.
- But: Ridiculously space efficient

Occasional errors, specifically false positives.
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Bloom Filters

Stores information about a set of elements S € U.
Supports two operations:

1. add(x)-adds x € U to theset S

2. contains(x) —ideally: trueif x € §, false otherwise

24



Bloom Filters

Stores information about a set of elements S € U.
Supports two operations:

1. add(x)-adds x € U to theset S

2. contains(x) —ideally: trueif x € §, false otherwise

Instead, relaxed guarantees:
- False — definitely notin S
- True — possibly in S
[i.e. we could have false positives]
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Bloom Filters - Why Accept False Positives?

* Speed - both add and contains very very fast.

* Space - requires a miniscule amount of space relative to
storing all the actual items that have been added.
— Often just 8 bits perinserted item!

* Fallback mechanism - can distinguish false positives from
true positives with extra cost
— Ok if mostly negatives expected + low false positive rate
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Bloom Filters: Application

Google Chrome has a database of malicious URLs, but it takes a long

time to query.

Want an in-browser structure, so needs to be efficient and be space-

efficient

Want it so that can check if a URL is in structure:

~ If return False, then definitely not in the structure (don’t need to
do expensive database lookup, website is safe)

- If return True, the URL may or may not be in the structure. Have to
perform expensive lookup in this rare case.
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Bloom Filters — More Applications

* Any scenario where space and efficiency are important.
* Used a lot in networking

* |nternet routers often use Bloom filters to track blocked IP
addresses.

* In distributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set
of data being stored.

* Google BigTable uses Bloom filters to reduce disk lookups
* And onand on...

28



Bloom Filters - Ingredients

Basic data structure is a kXm binary array
“the Bloom filter”

* krowsty,..,t;, each of sizem

* Think of each row as an m-bit vector

k different hash functions hy, ..., h,: U — |m]

29



Bloom Filters - Initialization

Size of array

Number of :
associated to

hash N hash

functions eac . as
function.

function iNnTIALIZE(k, M)

. for each hash
— n —’
fori=1,..,k:do function, initialize

t; = new bit vector of m Os an empty bit
vector of size m




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

0 1
t, 0 0
t, 0 0
t, 0 0




Bloom Filters: Add

function ADD(x)
fori = 1, cer ) k: do | ———— for each hash

ti[hi(x)] =1 function h,

Index into i-th bit-vector, at index produced h;(x) — result of hash
by hash function and set to 1 function h; on x



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) hi(“thisisavirus.com”) — 2
fori =1, .., k:do

ti[h;(x)] =1

Index 0 1 2
t 0 0 0
t, 0 0 0
ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) hi(“thisisavirus.com”) — 2
fori=1,..,k:do h,(“thisisavirus.com”) — 1
t;[hi(x)] =1
Index 0 1 2
t4 0 0 1
t, 0 0 0
ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function Abp(x) h,(“thisisavirus.com”) — 2
fori =1,..,k:do h,(“thisisavirus.com”) — 1
t;[h;(x)] =1 hy(“thisisavirus.com”) — 4

Index 0 1 2

tq 0 0 1

t, 0 1 0

ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function Abp(x) h,(“thisisavirus.com”) — 2
fori =1,..,k:do h,(“thisisavirus.com”) — 1
t;[h;(x)] =1 hy(“thisisavirus.com”) — 4

Index 0 1 2

tq 0 0 1

t, 0 1 0

ts 0 0 0




Bloom Filters: Contains

function CONTAINS(x)

returnt,[h;(x)] == 1A t,|h,(x)] == 1A At [h(x)] == 1

Returns True if the bit vector t; for each hash function has bit 1 at
index determined by h;(x),
Returns False otherwise



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

h,(“thisisavirus.com”) — 1

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

h,(“thisisavirus.com”) — 1
h;(“thisisavirus.com”) — 4

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2
h,(“thisisavirus.com”) — 1

h;(“thisisavirus.com”) — 4

Index 0 1 2 3
Since all conditions satisfied, returns True (correctly)
1 U U U
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x)
fori=1,..,k:do

tilhi(x)] =1

Index 0 1 2
t 0 0 1
t, 0 1 0
ts 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori =1, .., k:do

ti[h;(x)] =1

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do h,(“totallynotsuspicious.com”) — 0
ti[h;(x)] =1
Index 0 1 2 3
t, 0 1 1 0
t 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do h,(“totallynotsuspicious.com”) — 0
t; [hl(x)] =1 h;(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t, 0 1 1 0

t, 1 1 0 0

ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abp(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do h,(“totallynotsuspicious.com”) — 0
t; [hl(x)] =1 h;(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t, 0 1 1 0

t, 1 1 0 0

ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

h;(“verynormalsite.com”) — 4

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com?)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

h;(“verynormalsite.com”) — 4

Index 0 1 2 3

Since all conditions satisfied, returns True (incorrectly)

1 U U

t, 1 1 0 0

ty 0 0 0 0




Bloom Filters — Three operations

* Set up Bloom filter for S = @

* Update Bloom filter for S « S U {x}

* Checkifx €S

function INITIALIZE(k, m)

fori=1,..,k:do
t; = new bit vector of m Os

function ADD(x)
fori=1,..,k:do
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What you can’t do with Bloom filters

* Thereis no delete operation
— Once you have added something to a Bloom filter for S, it stays

* You can’t use a Bloom filter to name any element of S

But what you can do makes them very effective!

54



N
!
N

X




Analysis: False positive probability

Question: For an element x € U, what is the probability that
~contains(x) returns true if add(x) was never executed before?



Analysis: False positive probability

 Question: For an element x € U, what is the probability that
~contains(x) returns true if add(x) was never executed before?

Probability over what?!  Over the choice of the hy, ..., h;,

Assumptions for the analysis:

 Each h;(x) is uniformly distributed in [m] for all x and i

* Hash function outputs for each h;are mutually independent (not
just in pairs)

 Different hash functions are independent of each other



False positive probability — Events

Assume we perform add(x, ), ...,add(x,,)
+ contains(x) forx & {xq, ..., x,}

Event E; holds iff h;(x) € {h;(x;), ..., h;(x,)}

K
P(false positive) = P(E;NE, Nn---NE},) = HP(Ei)
i=1

h4, ..., h; independent

58



False positive probability — Events

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,,)}
Event E; holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,)

P(ES) = ) P(h(x) = 2) - P(Ef | hy(x) = 7)

LTP
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False positive probability - Events |and h;(x) # h;(x,)

Event E{ holds iff h; (x) # h;(x;) and ...

P(Ef|hi(x) =2) = P(h;(xy) # z, ..., h;(xp) # z | hy(x) = 2)

Independence of values
of h; on different inputs

= P(i(xy) # 2, 0 (x) # 2)

N ﬁP(hi(xj) + 2)
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False positive probability - Events |and h;(x) # h;(x,)

Event E{ holds iff h; (x) # h;(x;) and ...

P(Ef|hi(x) =2) = P(h;(xy) # z, ..., h;(xp) # z | hy(x) = 2)

Independence of values | _—» — P(h;(x1) # 2, ..., hi(x,) # 2)

of h; on different inputs \ n
= [ [P(0i() # )
=il

Outputs of h; uniformly spread n 1 1\

=[]0

m m

m J=1 n
‘p(Eic) = z P(h;(x) = z) - P(E{ | hj(x) = z) = (1 _;11)
z=1
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False positive probability — Events

Event E; holds iff h;(x) € {h;(x,), ..., h;(x,,)}

Event E; holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,)
n

P(ES) = (1 _ 1)

m

) rrR - lj(l - P(Ef)) = (1 - (1 _i)n>k
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False Positivity Rate — Example
1\™\"
FPR = (1—(1——) )
m

e.g.,n = 5,000,000 e
k= 30 mm) FPR=1.28%

m = 2,500,000
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Comparison with Hash Tables - Space

o Google storing 5 million URLs, each URL 40 bytes.
e Bloom filter withk = 30andm = 2,500,000

Hash Table

(optimistic)
5,000,000 x40B = 200MB

Bloom Filter

2,500,000 x30 = 75,000,000 bits
<10 MB




Time

e Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
e 0.5seconds to do lookup in the database, 1ms for lookup in Bloom filter.

Suppose the false positive rate is 3%
’ PP P . 0.5 seconds DB lookup

false positives — \

100000 x0.03 x500ms +2000x500 ms
Ims + x

102000
T total URLs malicious URLs

~ 25.51ms

Bloom filter lookup



Bloom Filters typical of....

. randomized algorithms and randomized data structures.

* Simple

* Fast

* Efficient
* Elegant
* Useful!
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More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases:
ATG,C

Suppose that the DNA sequence is random: the base in each position is
selected independently of other positions, and for each particular
position, one of the 4 bases is selected such that the letters G and C

occur with probability 0.2 each and A and T occur with probability 0.3
each.

In a sequence of length n, what is the expected number of occurrences
of the sequence AATGTC?
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More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C

Suppose that the DNA sequence is random where the base in each position is
independent of other positions, and for each particular position, the letters G and C
occur with probability 0.2 each and A and T occur with probability 0.3 each.

In a sequence of length n, what is the expected number of occurrences of the
sequence AATGTC?
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