CSE 312
Foundations of Computing II

Lecture 11: Wrap up independence or RVs + Bloom Filters

Midterm Monday, Feb 13 at 9:30. Info later today

Anonymous questions: www.slido.com/2671111
Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!
Recap Variance – Properties

Definition. The variance of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_x(x) \cdot (x - \mathbb{E}[X])^2$$

Theorem. For any $a, b \in \mathbb{R}$, $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$

Theorem. $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
Questions

The **variance** of a (discrete) RV X is

$$\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_x(x) \cdot (x - \mathbb{E}[X])^2$$

• Can the variance of a random variable be negative?

• Is $\text{Var}(X + 5) = \text{Var}(X) + 5$?

• Is it true that if $\text{Var}(X) = 0$, then X is a constant?

• What is the relationship between $\mathbb{E}(X^2)$ and $[\mathbb{E}(X)]^2$?
Random Variables and Independence

Definition. Two random variables X, Y are *(mutually) independent* if for all x, y,

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

Intuition: Knowing X doesn’t help you guess Y and vice versa

Definition. The random variables X_1, \ldots, X_n are *(mutually) independent* if for all x_1, \ldots, x_n,

$$P(X_1 = x_1, \ldots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all outcomes!
Agenda

• Review: Variance and Independent Random Variables
• Properties of Independent Random Variables
• An Application: Bloom Filters!
Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$

Corollary. If X_1, X_2, \ldots, X_n mutually independent,

$$\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i} \text{Var}(X_i)$$
Example – Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_i = \begin{cases} 1, & \text{ith outcome is heads} \\ 0, & \text{ith outcome is tails.} \end{cases}$
- $Z = \text{number of heads}$

What is $\mathbb{E}[Z]$? What is $\text{Var}(Z)$?

Fact. $Z = \sum_{i=1}^{n} X_i$

$P(X_i = 1) = p$
$P(X_i = 0) = 1 - p$

$P(Z = k) =$
Example – Coin Tosses

We flip \(n \) independent coins, each one heads with probability \(p \)

- \(X_i = \begin{cases} 1, & \text{ith outcome is heads} \\ 0, & \text{ith outcome is tails} \end{cases} \)
- \(Z = \text{number of heads} \)

What is \(\mathbb{E}[Z] \)? What is \(\text{Var}(Z) \)?

Note: \(X_1, \ldots, X_n \) are mutually independent! [Verify it formally!]

\[
\text{Var}(Z) = \sum_{i=1}^{n} \text{Var}(X_i) = n \cdot p(1 - p)
\]

\[
P(Z = k) = \binom{n}{k}p^k(1 - p)^{n-k}
\]

\[
P(X_i = 1) = p \\
P(X_i = 0) = 1 - p
\]

Fact. \(Z = \sum_{i=1}^{n} X_i \)
(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let $x_i, y_i, i = 1, 2, \ldots$ be the possible values of X, Y.

\[
\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)
\]

\[= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)\]

\[= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)\]

\[= \mathbb{E}[X] \cdot \mathbb{E}[Y]\]

Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$
(Not Covered) Proof of \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \)

Theorem. If \(X, Y \) independent, \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \)

Proof

\[
\begin{align*}
\text{Var}(X + Y) \\
= \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 \\
= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2 \\
= \mathbb{E}[X^2] + 2\mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 + 2\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[Y]^2) \\
= \mathbb{E}[X^2] - \mathbb{E}[X]^2 + \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + 2\mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y] \\
= \text{Var}(X) + \text{Var}(Y) + 2\mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y] \\
= \text{Var}(X) + \text{Var}(Y)
\end{align*}
\]

equal by independence
Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!
Basic Problem

Problem: Store a subset S of a large set U.

Example. $U =$ set of 128 bit strings $\approx 2^{128}$
$S =$ subset of strings of interest ≈ 1000

Two goals:
1. Very fast (ideally constant time) answers to queries “Is $x \in S$?” for any $x \in U$.
2. Minimal storage requirements.
Naïve Solution I – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$S = \{0, 2, \ldots, K\}$$

Membership test: To check $x \in S$ just check whether $A[x] = 1$.

→ constant time! 😊 😄

Storage: Require storing 2^{128} bits, even for small S. 😞 😢

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th></th>
<th>K</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>...</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Naïve Solution II – Small Storage

Idea: Represent S as a list with $|S|$ entries.

$S = \{0, 2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$.

(Can be made logarithmic by using a tree)
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)
Hashing: collisions

Collisions occur when \(h(x) = h(y) \) for some distinct \(x, y \in S \), i.e., two elements of set map to the same location.

- Common solution: **chaining** – at each location (bucket) in the table, keep linked list of all elements that hash there.

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad \cdots & \quad m \\
& \quad x_1 & \quad x_2 & \quad x_3 & \quad h(x_1) = h(x_3)
\end{align*}
\]
Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check $x \in S$ just check whether $A[h(x)] = x$

Storage: m elements (size of array)

Challenge 1: Ensure $h(x) \neq h(y)$ for most $x, y \in S$

Challenge 2: Ensure $m = O(|S|)$
Good hash functions to keep collisions low

• The hash function h is good iff it
 – distributes elements uniformly across the m array locations so that
 – pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
Hashing: summary

Hash Tables

• They store the data itself
• With a good hash function, the data is well distributed in the table and lookup times are small.
• However, they need at least as much space as all the data being stored, i.e., $m = \Omega(|S|)$

Can we do better!?
In some cases, $|S|$ is huge, or not known a-priori ...
Bloom Filters
to the rescue
(Named after Burton Howard Bloom)
Bloom Filters – Main points

- Probabilistic data structure.
- Close cousins of hash tables.
 - But: Ridiculously space efficient
- Occasional errors, specifically false positives.
Bloom Filters

- Stores information about a set of elements \(S \subseteq U \).
- Supports two operations:
 1. \texttt{add}(x) - adds \(x \in U \) to the set \(S \)
 2. \texttt{contains}(x) – ideally: true if \(x \in S \), false otherwise
Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 1. $\text{add}(x)$ - adds $x \in U$ to the set S
 2. $\text{contains}(x)$ – ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:
- False \rightarrow definitely not in S
- True \rightarrow possibly in S
 [i.e. we could have false positives]
Bloom Filters – Why Accept False Positives?

- **Speed** – both **add** and **contains** very very fast.
- **Space** – requires a miniscule amount of space relative to storing all the actual items that have been added.
 - Often just 8 bits per inserted item!
- **Fallback mechanism** – can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate
Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don’t need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.
Bloom Filters – More Applications

• Any scenario where space and efficiency are important.
• Used a lot in networking
• Internet routers often use Bloom filters to track blocked IP addresses.
• In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
• Google BigTable uses Bloom filters to reduce disk lookups
• And on and on...
Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array “the Bloom filter”

- k rows t_1, \ldots, t_k, each of size m
- Think of each row as an m-bit vector

k different hash functions $h_1, \ldots, h_k : U \rightarrow [m]$
Bloom Filters - Initialization

function \text{INITIALIZE}(k, m)

\text{for } i = 1, \ldots, k: \text{ do}
\[t_i = \text{new bit vector of } m \text{ 0s} \]

Number of hash functions

Size of array associated to each hash function.

for each hash function, initialize an empty bit vector of size \(m \)
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```plaintext
function INITIALIZE($k, m$)
  for $i = 1, \ldots, k$: do
    $t_i = \text{new bit vector of } m \text{ 0s}$
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Add

function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\[t_i[h_i(x)] = 1 \]

for each hash function \(h_i \)

Index into \(i \)-th bit-vector, at index produced by hash function and set to 1

\(h_i(x) \rightarrow \) result of hash function \(h_i \) on \(x \)
Bloom Filters: Example

Bloom filter \(\mathbf{t} \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\[t_i[h_i(x)] = 1 \]

add(“thisisavirus.com”)

\[h_1(“thisisavirus.com”) \rightarrow 2 \]

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

\[
\text{function } \text{ADD}(x) \\
\text{for } i = 1, \ldots, k: \text{ do} \\
t_i[h_i(x)] = 1
\]

add("thisisavirus.com")

\[
\begin{array}{c|c|c|c|c|c}
\text{Index} & 0 & 1 & 2 & 3 & 4 \\
\hline
\text{t}_1 & 0 & 0 & 1 & 0 & 0 \\
\text{t}_2 & 0 & 0 & 0 & 0 & 0 \\
\text{t}_3 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add(“thisisavirus.com”)

- $h_1(“thisisavirus.com”) \rightarrow 2$
- $h_2(“thisisavirus.com”) \rightarrow 1$
- $h_3(“thisisavirus.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

Function \(\text{ADD}(x) \)

for \(i = 1, \ldots, k \): do

\(t_i[h_i(x)] = 1 \)

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\text{add(“thisisavirus.com”) } \)

\(h_1(“thisisavirus.com”) \rightarrow 2 \)

\(h_2(“thisisavirus.com”) \rightarrow 1 \)

\(h_3(“thisisavirus.com”) \rightarrow 4 \)
Bloom Filters: Contains

function CONTAINS(x)
 return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$,
Returns False otherwise
Bloom Filters: Example

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

The function `contains(x)`

\[
\text{return } t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1
\]

contains(“thisisavirus.com”)

<table>
<thead>
<tr>
<th>Index (\rightarrow)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function contains(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“thisisavirus.com”)

$h_1(“thisisavirus.com”) \rightarrow 2$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{CONTAINS}(x)$

return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Contains("thisisavirus.com")

\begin{align*}
 h_1("thisisavirus.com") & \rightarrow 2 \\
 h_2("thisisavirus.com") & \rightarrow 1
\end{align*}

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

contains(“thisisavirus.com”)
$h_1(“thisisavirus.com”) \rightarrow 2$
$h_2(“thisisavirus.com”) \rightarrow 1$
$h_3(“thisisavirus.com”) \rightarrow 4$
Bloom Filters: Example

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```
function CONTAINS(x)
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$
```

contains(“thisisavirus.com”)

$h_1(“thisisavirus.com”) \rightarrow 2$
$h_2(“thisisavirus.com”) \rightarrow 1$
$h_3(“thisisavirus.com”) \rightarrow 4$

Since all conditions satisfied, returns True (correctly)
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

$$\text{add(“totallynotsuspicious.com”) }$$

function ADD(x)

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function \(\text{ADD}(x) \)

for $i = 1, \ldots, k$: do

\[t_i[h_i(x)] = 1 \]

add(“totallynotsuspicious.com”)

\[h_1(“totallynotsuspicious.com”) \rightarrow 1 \]

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Function $ADD(x)$

for $i = 1, \ldots, k$: do

$t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

$h_1("totallynotsuspicious.com") → 1$

$h_2("totallynotsuspicious.com") → 0$
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

function $\text{ADD}(x)$

```plaintext
for $i = 1, \ldots, k$: do
    $t_i[h_i(x)] = 1$
```

add(“totallynotsuspicious.com”)

- $h_1(“totallynotsuspicious.com”) \rightarrow 1$
- $h_2(“totallynotsuspicious.com”) \rightarrow 0$
- $h_3(“totallynotsuspicious.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

$$\text{function } \text{ADD}(x)$$
$$\text{for } i = 1, \ldots, k: \text{ do}$$
$$t_i[h_i(x)] = 1$$

add(“totallynotsuspicious.com”)

$h_1(“totallynotsuspicious.com”) \rightarrow 1$
$h_2(“totallynotsuspicious.com”) \rightarrow 0$
$h_3(“totallynotsuspicious.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
function CONTAINS(x):
    return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

contains(“verynormalsite.com”)
```

$$h_1(“verynormalsite.com”) \rightarrow 2$$

<table>
<thead>
<tr>
<th>Index \rightarrow</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

function $\text{CONTAINS}(x)$

return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \ldots \land t_k[h_k(x)] == 1$

contains(“verynormalsite.com”)

$h_1(“verynormalsite.com”) \rightarrow 2$

$h_2(“verynormalsite.com”) \rightarrow 0$
Bloom Filters: False Positives

Bloom filter \(t \) of length \(m = 5 \) that uses \(k = 3 \) hash functions

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

contains(“verynormalsite.com”)

\[
\begin{align*}
\text{contains(“verynormalsite.com”) } \rightarrow 2 \\
h_1(“verynormalsite.com”) & \rightarrow 2 \\
h_2(“verynormalsite.com”) & \rightarrow 0 \\
h_3(“verynormalsite.com”) & \rightarrow 4
\end{align*}
\]
Bloom Filters: False Positives

Bloom filter t of length $m = 5$ that uses $k = 3$ hash functions

```python
def contains(x):
    return $t_1[h_1(x)] \land t_2[h_2(x)] \land \cdots \land t_k[h_k(x)] = 1$
```

contains(“verynormalsite.com”)

- $h_1(“verynormalsite.com”) \rightarrow 2$
- $h_2(“verynormalsite.com”) \rightarrow 0$
- $h_3(“verynormalsite.com”) \rightarrow 4$

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all conditions satisfied, returns **True** (incorrectly)
Bloom Filters – Three operations

- Set up Bloom filter for $S = \emptyset$

- Update Bloom filter for $S \leftarrow S \cup \{x\}$

- Check if $x \in S$

function \textsc{initialize}(k, m)
\hspace{1em} for $i = 1, \ldots, k$: do
\hspace{2em} $t_i = \text{new bit vector of } m \text{ 0s}$

function \textsc{add}(x)
\hspace{1em} for $i = 1, \ldots, k$: do
\hspace{2em} $t_i[h_i(x)] = 1$

function \textsc{contains}(x)
\hspace{1em} return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$
What you can’t do with Bloom filters

• There is no delete operation
 – Once you have added something to a Bloom filter for S, it stays

• You can’t use a Bloom filter to name any element of S

But what you can do makes them very effective!
Brain Break
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that $\text{contains}(x)$ returns true if $\text{add}(x)$ was never executed before?
Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that $\text{contains}(x)$ returns true if $\text{add}(x)$ was never executed before?

Probability over what?!

Over the choice of the h_1, \ldots, h_k

Assumptions for the analysis:

- Each $h_i(x)$ is uniformly distributed in $[m]$ for all x and i.
- Hash function outputs for each h_i are mutually independent (not just in pairs).
- Different hash functions are independent of each other.
False positive probability – Events

Assume we perform \(\operatorname{add}(x_1), \ldots, \operatorname{add}(x_n) \)
\[+ \operatorname{contains}(x) \text{ for } x \not\in \{x_1, \ldots, x_n\} \]

Event \(E_i \) holds iff \(h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\} \)

\[
P(\text{false positive}) = P(E_1 \cap E_2 \cap \cdots \cap E_k) = \prod_{i=1}^{k} P(E_i)
\]

\(h_1, \ldots, h_k \) independent
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and \ldots and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c \mid h_i(x) = z)$$

LTP
False positive probability – Events

$$P(E_i^c \mid h_i(x) = z) = P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z \mid h_i(x) = z)$$

$$= P(h_i(x_1) \neq z, \ldots, h_i(x_n) \neq z)$$

$$= \prod_{j=1}^{n} P(h_i(x_j) \neq z)$$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

Independence of values of h_i on different inputs
False positive probability – Events

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and ... and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c \mid h_i(x) = z) = P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z \mid h_i(x) = z)$$

= $P(h_i(x_1) \neq z, ..., h_i(x_n) \neq z)$

= $\prod_{j=1}^{n} P(h_i(x_j) \neq z)$

= $\prod_{j=1}^{n} \left(1 - \frac{1}{m}\right) = \left(1 - \frac{1}{m}\right)^n$

Independence of values of h_i on different inputs

Outputs of h_i uniformly spread

$$P(E_i^c) = \sum_{z=1}^{m} P(h_i(x) = z) \cdot P(E_i^c \mid h_i(x) = z) = \left(1 - \frac{1}{m}\right)^n$$
False positive probability – Events

Event E_i holds iff $h_i(x) \in \{h_i(x_1), \ldots, h_i(x_n)\}$

Event E_i^c holds iff $h_i(x) \neq h_i(x_1)$ and \ldots and $h_i(x) \neq h_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

$$\text{FPR} = \prod_{i=1}^{k} (1 - P(E_i^c)) = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$
False Positivity Rate – Example

\[FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k \]

e.g., \(n = 5,000,000 \)
\(k = 30 \)
\(m = 2,500,000 \)

\(FPR = 1.28\% \)
Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k = 30$ and $m = 2,500,000$

<table>
<thead>
<tr>
<th>Hash Table</th>
<th>Bloom Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(optimistic) $5,000,000 \times 40B = 200\text{MB}$</td>
<td>$2,500,000 \times 30 = 75,000,000$ bits $< 10 \text{MB}$</td>
</tr>
</tbody>
</table>
Time

- Say avg user visits **102,000** URLs in a year, of which **2,000** are malicious.
- **0.5** seconds to do lookup in the database, **1ms** for lookup in Bloom filter.
- Suppose the false positive rate is **3%**

\[
\text{false positives} = \frac{100000 \times 0.03 \times 500\text{ms}}{102000} + 2000 \times 500\text{ms} \\
\approx 25.51\text{ms}
\]

0.5 seconds DB lookup

Bloom filter lookup
Bloom Filters typical of...

... randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!
More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C

Suppose that the DNA sequence is random: the base in each position is selected independently of other positions, and for each particular position, one of the 4 bases is selected such that the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each.

In a sequence of length n, what is the expected number of occurrences of the sequence AATGTC?
More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C. Suppose that the DNA sequence is random where the base in each position is independent of other positions, and for each particular position, the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each. In a sequence of length n, what is the expected number of occurrences of the sequence AATGTC?