CSE 312
Foundations of Computing Il

Lecture 11: Wrap up independence or RVs + Bloom Filters

Midterm Monday, Feb 13 at 9:30. Info later today

Anonymous questions: www.slido.com/2671111



Agenda

* Review: Variance and Independent Random Variables @
* Properties of Independent Random Variables
* An Application: Bloom Filters!



Variance - Properties

_____________________________________________________________________________________________________________________________________________________________________

 Definition. The variance of a (discrete) RV X is

Var(X) = E[(X - E[X])?] = 5 px(x) .

g X1)?]
e Cn st

Theorem. Forany a,b € R, Var(a - X + b) = a? - Var(X) :
e L il U - 5




Questions

Can the variance of a random variable be negative?

no

Is Var(X + 5) = Var (X) + 52

. ro Ve(e8)= ve(x)
Is it true that if Var(X) = 0, then X is a constant?
\ILQ K — awt “/ELK\

What is the relationship between E(X?) and [E(X)]? ?

e

\E®Y < E(vf‘). 4
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P(Y\;‘N - P(Xzzzence

Random Variablés and Indepe ,
Comma is shorthand for AND

____________________________________________________________________________________________________________________________________________________________________

 Definition. Two random variables X, Y are (mutually) independent if

Eforall@
PX=xY=y)=PX=x)-P(Y =y)

Intuition: Knowing X doesn’t help you guess Y and vice versa

 Definition. The random variables X4, ..., X,, are (mutually) independent if

forall xq, ..., x,,

P(Xl = X1, ...,Xn — xn) — P(Xl — xl) "'P(Xn — xn)

Note: No need to check for all subsets, but need to check for all outcomes!




Agenda

* Review: Variance and Independent Random Variables
* Properties of Independent Random Variables @&
* An Application: Bloom Filters!



Important Facts about Independent Random Variables

___________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________

Corollary. If X;, X5, ..., X;, mutually independent,

Var (i Xl-) = zn: Var(X;)

i=1 i

____________________________________________________________________________________________________________________________________________________



Example - Coin Tosses

We flip n independent coins, each one heads with probability p

_ |1, i*" outcome is heads
- Xi — .th . -1
0, (*"* outcome is tails.

| - Z = number of heads }

What is E[Z]? What is Var(2)?




“N \
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Example - Coin Tosses

We flip n independent coins, each one heads with probablllty p

1, it outcome is heads Fact.Z = Y | X;
0, i*" outcome is tails. e s
- Z = number of heads - P(X;=1) =p
PX;=0)=1—-p

What is E[Z]? What is Var(Z)? I ’:::::::::::::::::::::::::::::::::::::::::::;

_________________________________________________________________

Note: X, ..., X,, are mutually independent! [Verify it formally!]

‘ Var(Z) = 2 Var(X,) =n-p(1—p)  NoteVar(X) =p(1-p)
=1




Indg
(Not Covered) Proof of E[X - Y] = E[X] : E[Y]

___________________________________________________________________________________________________________________________________________________

Proof Let x;,y;,i = 1,2, ...be the possible values of X, Y.

U

:z:z:xi-yi-P(X:xi)'P(Y:y])
U

=in -P(X =x;) - (zyj'P(Y=3’j))

L J

independence

= E[X] - E[Y]

Note: NOT true in general; see earlier example E[X?]#E[X]?




\vsénq 3
(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

___________________________________________________________________________________________________________________________________________________

Proof Var(X +7Y)
= E[(X +Y)?] — (E[X +Y])? _— linearity
= E[X? + 2XY + Y?] — (E[X] + E[Y])?
= E[X2] 4+ 2 E[XY] + E[Y2] — (E[X]? + 2 E[X] E[Y] + E[Y]?)
= E[X?] — E[X]? + E[Y?] — E[Y]? + 2 E[XY] — 2 E[X] E[Y]
=Var(X) + Var(Y) + 2 E[XY] — 2 E[X] E[Y]

=Var(X) + Var(Y) N—7

equal by independence

11
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Agenda

* Review: Variance and Independent Random Variables
* Properties of Independent Random Variables
* An Application: Bloom Filters! @
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Basic Problem

Problem: Store a subset S of
L —

Example. U = set of 128 bit strings [ =228
S = subset of strings of interest S| ~ 1000

------------------------------------------------------------------------------------------------------------------------------------------------------------------

Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € §?”
forany x € U. —

2. Minimal storage requirements.

14



Naive Solution | - Constant Time

_— Alx] = {1 ifxes

Idea: Represent S as an array A with 22° entries.

Membership test: To check. x € S just check whether A[x]| = 1.

e ) o0
— constant time! _ & @

Storage: Require storing 2'*° bits, even for small S. ‘\E @

15



Naive Solution Il - Small Storage

Idea: Represent § as a list with |S| entries.

$=1{02,.., K ‘ o‘/\ 2 T/\ /\ |<.

Storage: Grows with |S| only @ &7)

Membership test: Check x € S requires time linearin |S|

A

(Can be made logarithmic by using a tree) '\Jé @
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Hash Table
Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whethenAlh(x )= x

Storage: m elements (size of array) \\ o
) |

________________ )

w
hash function h: U - [m]

17



Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct x,y € S,
i.e., two elements of set map to the same location

1|2Y3]4

Common solution: chaining — at each

5
location (bucket) in the table, keep
h(x;) = h(x3)= x

linked list of all elements that hash there. —

18



Hash Table

Idea: Map elements in S into an array A of size m using a hash function h

Membership test: To check x € S just check whether A[h(x)] = x

Storage: m elements (size of array) %

Challenge 1: Ensure
h(x) # h(y) for

Challenge 2: Ensure
m = 0(|S])

19



Good hash functions to keep collisions low

* The hash function his good iff it

— distributes elements uniformly across the m array locations so that
— pairs of elements are mapped independently

““‘Universal Hash Functions” - see CSE 332
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Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and

lookup times are small. In some cases, |S| is huge,

* However, they need at least as much / or not known a-priori ...
space as all the data being stored, —

i.e.,, m = Q(|S]) ~
\ Can we do

better!?



Bloom Filters

to the rescue

(Named after Burton Howard Bloom)



Bloom Filters — Main points

Probabilistic data structure.

Close cousins of hash tables.
- But: Ridiculously space efficient

Occasional errors, specifically false positives.
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Bloom Filters

Stores information about a set of elements S C U.

Supports two operations:
1. add(x)-addsx € U totheset S

2. contains(x) —ideally: true if x € §, false otherwise
———————E

24



Bloom Filters

Stores information about a set of elements S C U.

Supports two operations:
1. add(x)-addsx € U totheset S (Z
2. contains(x) —ideally: true if x € §, false otherwise

Instead, relaxed guarantees:
- False — definitely notin S
. True — possibly in S
[i.e. we could have false positives]

25



Bloom Filters - Why Accept False Positives?

* Speed - both add and contains very very fast.

* Space - requires a miniscule amount of space relative to
storing all the actual items that have been added.
— Often just 8 bits perinserted item!

* Fallback mechanism - can distinguish false positives from
true positives with extra cost

— Ok if mostly negatives expected + low false positive rate

26



Bloom Filters: Application

Google Chrome has a database of malicious URLs, but it takes a long
time to query.
Want an in-browser structure, so needs to be efficient and be space-

efficient S-ﬂ* |

- Want it so that can check if a URL is in structure:
— If return False, then definitely not in the structure (don’t need to

do expensive database lookup, website is safe)
- Ifreturn True, the URL may or may not be in the structure. Have to
« [ [ [
perform expensive lookup in this rare case.

27



Bloom Filters - More Applications

* Any scenario where space and efficiency are important.
* Used alotin networking

* |nternet routers often use Bloom filters to track blocked IP
addresses.

In distributed systems when want to check consistency of data across

different locations, might send a Bloom filter rather than the full set
of data being stored.

* Google BigTable uses Bloom filters to reduce disk lookups
* And onandon...

28



Bloom Filters - Ingredients

Basic data structure is a kXm binary array
“the Bloom filter”

* krowsty,..,t,, each of sizem —‘fo,\ )y ""\S
* Think of each row as an m-bit vector

k different hash functions hy, ..., hy: U —=(|m]|
o ( _- ™-|

\\\ > )

29
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Bloom Filters - Initialization

Size of array

Number of :
associated to

hash h hash

functions IS _ &S
function.

function iNnTIALIZE(k, M)

. . for each hash
fori=1,..,k:do function, initialize

t; =new bit vector of m 0s|  an empty bit
vector of size m




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions




Bloom Filters: Add

function AbD(x)
fori = 1, ceey k: do | ———— for each hash

t; [hl(X)] =1 function h,

Index into i-th bit-vector, at index produced h;(x) — result of hash
by hash function and set to 1 function h; on x



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

adé“thisisavirus.com”l
h,(“thisisavirus.com”) — 2

1

function Abb(x)

(r—
fori =1, ...,
Index 0 1 2
t 0 0 0
t, 0 0 0
ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function ADD(x) h,(“thisisavirus.com”) — 2
- : h,(“thisisavirus.com”) — 1

fori =1,..,k:do 2( )

ti[h;(x)] =1

Index 0 1 2

t 0 0 1

t, 0 0 0

ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function Abb(x) h,(“thisisavirus.com”) — 2
fori =1,..,k:do h,(“thisisavirus.com”) — 1
ti[h;(x)] =1 h;(“thisisavirus.com”) — 4

Index 0 1 2

t 0 0 1

t, 0 1 0

ts 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

function Abb(x) h,(“thisisavirus.com”) — 2
fori =1,..,k:do h,(“thisisavirus.com”) — 1
ti[h;(x)] =1 h;(“thisisavirus.com”) — 4

Index 0 1 2

t 0 0 1

t, 0 1 0

ts 0 0 0




Bloom Filters: Contains

function CONTAINS(x)

return ¢, [h,(x)] == 1At [h,(x)] == 1A At|h,(x)] == 1

Returns True if the bit vector t; for each hash function has bit 1 at
index determined by h;(x),
Returns False otherwise



Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

h,(“thisisavirus.com”) — 1

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2

h,(“thisisavirus.com”) — 1
h;(“thisisavirus.com”) — 4

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: Example

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) — 2
h,(“thisisavirus.com”) — 1

h;(“thisisavirus.com”) — 4

Since all conditions satisfied, returns True (correctly)

Index 0 1 2 3
1 J J \J

t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
function Abb(x)
fori=1,..,k:do

ti[h;(x)] =1

Index 0 1 2
t 0 0 1
t, 0 1 0
ts 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
function ADD(x) h,(“totallynotsuspicious.com”) — 1
fori =1,..,k:do

ti[h;(x)] =1

Index 0 1 2 3
t 0 0 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abb(x) h,(“totallynotsuspicious.com”) — 1
fori=1,..,k:do h,(“totallynotsuspicious.com”) — 0
ti[hi(x)] =1
Index 0 1 2 3
t4 0 1 1 0
t, 0 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abb(x) h,(“totallynotsuspicious.com”) — 1
fori=1,..,k:do h,(“totallynotsuspicious.com”) — 0
t;[h; (x)] =1 h;(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t4 0 1 1 0

t, 1 1 0 0

ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

function Abb(x) h,(“totallynotsuspicious.com”) — 1
fori=1,..,k:do h,(“totallynotsuspicious.com”) — 0
t;[h; (x)] =1 h;(“totallynotsuspicious.com”) — 4

Index 0 1 2 3

t4 0 1 1 0

t, 1 1 0 0

ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2

h,(“verynormalsite.com”) — 0

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2

h,(“verynormalsite.com”) — 0
h;(“verynormalsite.com”) — 4

Index 0 1 2 3
t 0 1 1 0
t, 1 1 0 0
ts 0 0 0 0




Bloom Filters: False Positives

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) — 2
h,(“verynormalsite.com”) — 0

h;(“verynormalsite.com”) — 4

Index 0 1 2 3

Since all conditions satisfied, returns True (incorrectly)

1 U U

. T
t, 1 1 0 0
‘ o
ts 0 0 0 0




Bloom Filters — Three operations

* Set up Bloom filter for S = @

* Update Bloom filter for S « S U {x}

e Checkifx e S

function INTIALIZE(k, m)
fori=1,..,k:do

t; = new bit vector of m Os

function ADD(x)
fori=1,..,k:do
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What you can’t do with Bloom filters

* Thereis no delete operation

— Once you have added something to a Bloom filter for S, it stays
* You can’t use a Bloom filter to name any element of S

But what you can do makes them very effective!

54






Analysis: False positive probability

Question: For an element x € U, what is the probability that
~contains(x) returns true if add(x) was never executed before?



Analysis: False positive probability

 Question: For an element x € U, what is the probability that
~contains(x) returns true if add(x) was never executed before?

Probability over what?!  Over the choice of the h, ..., hy,

Assumptions for the analysis:

 Each h;(x) is uniformly distributed in [m] for all x and i

 Hash function outputs for each h;are mutually independent (not
just in pairs)

 Different hash functions are independent of each other
Q. \, ..\
Vx Vi t\((x) = 0 wingwe = M\ ‘ S
\
W (;A\ W, («b\ w. (7./ WJ‘\JL\X



NS T O T

False positive probability — Events oddsk [x,,. Xn\

Assume we perform add(x,), ...,add(x,,)
+ contains(x) forx & {xq, ..., x,,}
—_———

Event E; holds iff h;(x) € {h;(x;), ..., h;(x,)}

— -’%

P(false positive) = P(E; N E, N - N Ek) = 1_[ P(E;)

/ —_
S r
N — \ E \J] .., hj independent

(\\ (y) h, (*\\ U \\(r\\zh{&)
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False positive probability — Events

Event Ei holds iff hl(X) € {hi(xl), 100 hl(xn)}
Event £/ holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,,)

P(ES) = ) P(ny(x) = 2) - P(ES | hy(x) = 2)

LTP
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False positive probability — Events |and h;(x) # h;(x,)

Event E holds iff h;(x) # h;(x;) and ...

PE;|hi(x) =2) = P(h(xy) # z, .., h;(xp) # z | hy(x) = 2)

Independence of values
of h; on different inputs

e - P(hi(xl) * Z, ""hi(xn) * 7)

N lﬁP(hi(xj) + 7)
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Event E holds iff h;(x) # h;(x;) and ...

False positive probability — Events |and h;(x) # h;(x,)

PE;|hi(x) =2) = P(h(xy) # z, .., h;(xp) # z | hy(x) = 2)

of h; on different inputs

Outputs of h; uniformly spread

\:

n

A A

(

Independence of values | _—» — P(hi(xy) # z, ..., h;(x,) # z)

N lﬁP(hi(xj) + 7)

-2)- -3

m J=1 n
‘ P(Ef) = z P(h;(x) = z) - P(E{ | h;(x) = z) = (1 _;11)
Zi=
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False positive probability — Events

Event Ei holds iff hl(X) € {hi(xl), 100 hl(xn)}

Event £/ holds iff h;(x) # h;(x;) and ... and h;(x) # h;(x,,)
n

P(ES) = (1 _ 1)

m

mm) rrR- 1j(1 — P(E)) = (1 ~ (1 —l)")"
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False Positivity Rate — Example
13"\
FPR = (1—(1——) )
m

e.g., n = 5,000,000 e
L _ 20 mm) FPR=1.28%

m = 2,500,000
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Comparison with Hash Tables - Space

o Google storing 5 million URLs, each URL 40 bytes.
e Bloom filter withk = 30andm = 2,500,000

Hash Table

(optimistic)
5,000,000 x40B = 200MB

Bloom Filter

2,500,000 x30 = 75,000,000 bits
<10 MB




Time

e Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
e 0.5seconds to dolookup in the database, 1ms for lookup in Bloom filter.

Suppose the false positive rate is 3%
’ PP P 3 0.5 seconds DB lookup

false positives / \

100000 x0.03 x500ms +2000x500 ms
Ims + x

102000
T total URLs malicious URLs

~ 25.51ms

Bloom filter lookup



Bloom Filters typical of....
. randomized algorithms and randomized data structures.

* Simple

* Fast

* Efficient
* Elegant
* Useful!
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More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases:
AT,G,C
Suppose that the DNA sequence is random: the base in each position is

selected independently of other positions, and for each particular

position, one of the 4 bases is selected such that the letters G and C
occur with probability 0.2 each and A and T occur with probability 0.3
each.

In a sequence of length n, what is the expected number of occurrences
of the sequence AATGTC?
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More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C

Suppose that the DNA sequence is random where the base in each position is
independent of other positions, and for each particular position, the letters G and C
occur with probability 0.2 each and A and T occur with probability 0.3 each.

In a sequence of length n, what is the expected number of occurrences of the
sequence AATGTC?
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