CSE 312 Foundations of Computing II

Lecture 11: Wrap up independence or RVs + Bloom Filters

Midterm Monday, Feb 13 at 9:30. Info later today

Anonymous questions: www.slido.com/2671111

Agenda

- Review: Variance and Independent Random Variables 🛛 🗨
- Properties of Independent Random Variables
- An Application: Bloom Filters!

$$g(x) = (x - E(x))^{\lambda}$$

Recap Variance – Properties

Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

11 P P

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_i = \begin{cases} 1, \ i^{\text{th}} \text{ outcome is heads} \\ 0, \ i^{\text{th}} \text{ outcome is tails.} \end{cases}$ Fact. $Z = \sum_{i=1}^{n} X_i$ - Z = number of heads $P(X_i = 1) = p$ $P(X_i = 0) = 1 - p$ What is $\mathbb{E}[Z]$? What is Var(Z)? $P(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$ Note: X_1, \ldots, X_n are <u>mutually</u> independent! [Verify it formally!] $Var(Z) = \sum Var(X_i) = n \cdot p(1-p)$ Note $Var(X_i) = p(1-p)$ 9

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .

$$\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j) \quad \text{independence}$$

$$= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$$

$$= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

10

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

man.

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var(X + Y) = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + \mathbb{E}[Y])^{2}$$

$$= \mathbb{E}[X^{2}] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^{2}] - (\mathbb{E}[X]^{2} + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^{2})$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2} + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y)$$

equal by independence

11

Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

2. Minimal storage requirements.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with *S* entries.

$$S = \{0, 2, ..., K\}$$

$$(0) \quad (2) \quad (...) \quad (K)$$
Storage: Grows with $|S|$ only
$$(L) \quad (S)$$
Membership test: Check $x \in S$ requires time linear in $|S|$

(Can be made logarithmic by using a tree)

F 😥

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h** Membership test: To check $x \in S$ just check whether A(h(x)) = xStorage: *m* elements (size of array) h(x) f(x) f(x) h(x) h(x)h(x)

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Good hash functions to keep collisions low

- The hash function **h** is good iff it
 - distributes elements uniformly across the *m* array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
 i.e., m = Ω(|S|)

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Bloom Filters to the rescue

(Named after Burton Howard Bloom)

Bloom Filters – Main points

- <u>Probabilistic</u> data structure.
- Close cousins of hash tables.
 - But: <u>Ridiculously</u> space efficient
- <u>Occasional</u> errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set *S*
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:
 - 1. add(x) adds $x \in U$ to the set *S*
 - 2. **contains**(x) ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False \rightarrow **definitely** not in *S*
- True \rightarrow **possibly** in *S*
 - [i.e. we could have *false positives*]

Bloom Filters – Why Accept False Positives?

- **Speed** both **add** and **contains** very very fast.
- **Space** requires a miniscule amount of space relative to storing all the actual items that have been added.
 - Often just 8 bits per inserted item!
- Fallback mechanism can distinguish false positives from true positives with extra cost
 - Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters – More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- Internet routers often use Bloom filters to track blocked IP addresses.
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- And on and on...

Bloom Filters – Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- $k \text{ rows } t_1, \dots, t_k$, each of size m
- Think of each row as an *m*-bit vector

k different hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k: U \rightarrow [m]$

720,1,-, ~-15

Bloom Filters - Initialization

Bloom filter t of length m = 5 that uses k = 3 hash functions

function INITIALIZE (k, m) for $i = 1,, k$: do t_i = new bit vector of m 0s						
	Index →	0	1	2	3	4
	t ₁	0	0	0	0	0
	t ₂	0	0	0	0	0
	t ₃	0	0	0	0	0

Bloom Filters: Add

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

function ADD(x) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

$\overset{\text{Index}}{\rightarrow}$	0	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

	Index →	0	1	2	3	4
	t ₁	0	0	1	0	0
>	t ₂	0	0	0	0	0
	t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

 h_2 ("thisisavirus.com") $\rightarrow 1$

 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, Returns False otherwise

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

$\stackrel{Index}{\to}$	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

True

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("thisisavirus.com")

 h_1 ("thisisavirus.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t [h_{1}(x)] = -1$	$\Lambda t [h(x)] = -1 \Lambda$	$\Delta t_{1} [h_{1}(\gamma)] = -$	- 1	cont	ains("this	isavirus.c	om")	
True	True	Tri	Je	$h_1(")$ $h_2(")$ $h_3(")$	thisisaviru thisisaviru <mark>thisisaviru</mark>	us.com") us.com") us.com")	→ 2 → 1 → 4	
		Index →		0	1	2	3	4
		t ₁		0	0	1	0	0
		t ₂		0	1	0	0	0
		t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x)	h + [h(w)] = -		cont	ains("this	isavirus.c	om")	
$True \qquad True$	True		$h_1(")$ $h_2(")$ $h_3(")$	thisisaviru thisisaviru <mark>thisisaviru</mark>	us.com") us.com") us.com")	$\rightarrow 2$ $\rightarrow 1$ $\rightarrow 4$	
	Index		0	1	2	3	4
Since all conditions satisfied,	returns Tr	ue (corre	ctly)			
	۲1		U	U	I	U	0
	t ₂		0	1	0	0	0
	t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(x)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") $\rightarrow 1$

Index →	0	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(
$$x$$
)
for $i = 1, ..., k$: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") $\rightarrow 1$

 h_2 ("totallynotsuspicious.com") $\rightarrow 0$

 h_3 ("totallynotsuspicious.com") $\rightarrow 4$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com")

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \wedge t_2[h_2(x)] == 1 \wedge \cdots \wedge t_k[h_k(x)] == 1$

True

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

Index →	0	1	2	3	4
t ₁	0	1		0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com")

 h_1 ("verynormalsite.com") $\rightarrow 2$

 h_2 ("verynormalsite.com") $\rightarrow 0$

Index →	0	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_x[h_x(x)] == 1 \land t_x[h_x(x)] == 1 \land \dots \land t_x[h_x(x)] == 1$				= 1	contains("verynormalsite.com")				
	True	True	Tr	a	h_1 ("verynormalsite.com") $\rightarrow 2$ h_2 ("verynormalsite.com") $\rightarrow 0$ h_3 ("verynormalsite.com") $\rightarrow 4$				
			Index →		0	1	2	3	4
			t ₁		0	1	1	0	0
			t ₂		1	1	0	0	0
			t ₃		0	0	0	0	1

Bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$				contains("verynormalsite.com")				
$\frac{1}{1} \frac{1}{1} \frac{1}$				h_1 ("verynormalsite.com") $\rightarrow 2$				
				h_2 ("verynormalsite.com") $\rightarrow 0$				
				h_3 ("verynormalsite.com") $\rightarrow 4$				
	Index				1	2	3	4
Since all conditions	satistied,		ue (rectly)		U	0
		-1					-	_
t ₂					1	0	0	0
		t ₃		0	0	0	0	1
							•	

Bloom Filters – Three operations

• Set up Bloom filter for $S = \emptyset$

function INITIALIZE(k, m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0s

• Update Bloom filter for $S \leftarrow S \cup \{x\}$

function ADD(x) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$

• Check if $x \in S$

function CONTAINS(x) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$

What you can't do with Bloom filters

- There is no delete operation
 - Once you have added something to a Bloom filter for *S*, it stays
- You can't use a Bloom filter to name any element of *S*

But what you *can* do makes them very effective!

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains(x) returns true if add(x) was never executed before?

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that **contains**(x) returns true if **add**(x) was never executed before?

Probability over what?! Over the choice of the $h_1, ..., h_k$

Assumptions for the analysis:

- Each $\mathbf{h}_i(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each h_i are mutually independent (not just in pairs)
- Different hash functions are independent of each other

$$\forall x, \forall i$$
 $hi(x) = l$ with pulle in $l(z)$, $hi(x)$, $hi(y)$, $hi(z)$ mutually indep.

W--- N;(Xn))

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \sum_{z=1}^m P(\mathbf{h}_i(x) = z) \cdot P(E_i^c | \mathbf{h}_i(x) = z)$$

$$\mathsf{LTP}$$

False positive probability – Events

Event E_i holds iff $\mathbf{h}_i(x) \in {\mathbf{h}_i(x_1), \dots, \mathbf{h}_i(x_n)}$ Event E_i^c holds iff $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_1)$ and ... and $\mathbf{h}_i(x) \neq \mathbf{h}_i(x_n)$

$$P(E_i^c) = \left(1 - \frac{1}{m}\right)^n$$

FPR =
$$\prod_{i=1}^{k} (1 - P(E_i^c)) = (1 - (1 - \frac{1}{m})^n)^k$$

False Positivity Rate_ – Example

$$FPR = \left(1 - \left(1 - \frac{1}{m}\right)^n\right)^k$$

e.g.,
$$n = 5,000,000$$

 $k = 30$
 $m = 2,500,000$
FPR = 1.28%

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m = 2,500,000

Bloom Filter

2,500,000 ×30 = 75,000,000 bits

< 10 MB

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C

Suppose that the DNA sequence is random: the base in each position is selected independently of other positions, and for each particular position, one of the 4 bases is selected such that the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each.

In a sequence of length n, what is the expected number of occurrences of the sequence AATGTC?

More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C Suppose that the DNA sequence is random where the base in each position is independent of other positions, and for each particular position, the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each. In a sequence of length n, what is the expected number of occurrences of the sequence AATGTC?