
CSE 312

Foundations of Computing II
Lecture 11: Wrap up independence or RVs + Bloom Filters

Midterm Monday, Feb 13 at 9:30.  Info later today

Anonymous questions: www.slido.com/2671111
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Agenda

• Review: Variance and Independent Random Variables
• Properties of Independent Random Variables
• An Application:  Bloom Filters!
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Recap Variance – Properties 
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Definition. The variance of a (discrete) RV ! is

Var ! = & ! − &[!] ! = ∑" +# , ⋅ , − &[!] !

Theorem. Var ! = &[!!] − &[!]!

Theorem. For any ., 0 ∈ ℝ, Var . ⋅ ! + 0 = .! ⋅ Var !
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Questions

• Can the variance of a random variable be negative?

• Is Var(X + 5) = Var (X) + 5?

• Is it true that if Var(X) = 0, then X is a constant?

• What is the relationship between E(X2) and [E(X)]2  ?
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The variance of a (discrete) RV ! is

Var $ = & $ − &[$] ! = ∑" +# , ⋅ , − &[$] !
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Random Variables and Independence

5

Definition. Two random variables !, Y are (mutually) independent if 
for all ,, 5,

6 ! = ,, 7 = 5 = 6 ! = , ⋅ 6(7 = 5)

Definition. The random variables !$, … , !% are (mutually) independent if 
for all ,$, … , ,%,

6 !$ = ,$, … , !% = ,% = 6 !$ = ,$ ⋯6(!% = ,%)
Note: No need to check for all subsets, but need to check for all outcomes! 

Intuition: Knowing $ doesn’t help you guess . and vice versa 

Comma is shorthand for AND

Fx ER Xx is indep Yg
PAYED P Xx
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Agenda

• Review: Variance and Independent Random Variables
• Properties of Independent Random Variables
• An Application:  Bloom Filters!
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Important Facts about Independent Random Variables
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Theorem. If !, 7 independent, &[! ⋅ 7] = &[!] ⋅ &[7]

Theorem. If !, 7 independent, Var ! + 7 = Var ! + Var 7

Corollary. If !$, !!, …, !% mutually independent, 

Var <
&'$

%
!& =<

&

%
Var(!&)



Example – Coin  Tosses

We flip = independent coins, each one heads with probability +

- !& = >1, @
th outcome is heads

0, @th outcome is tails.
- N = number of heads

What is &[N]?    What is Var(N)?
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/ $$ = 1 = +
/ $$ = 0 = 1 − +

/ 2 = 3 =

Fact. N = ∑&'$% !&
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Example – Coin  Tosses

We flip = independent coins, each one heads with probability +

- !& = >1, @
th outcome is heads

0, @th outcome is tails.
- N = number of heads

What is &[N]?    What is Var(N)?

9

/ $$ = 1 = +
/ $$ = 0 = 1 − +

/ 2 = 3 = %
& +& 1 − + %'&

Fact. N = ∑&'$% !&

Note: !$, … , !% are mutually independent! [Verify it formally!]

Var N =<
&'$

%
Var !& = = ⋅ +(1 − +) Note Var $$ = +(1 − +)

A p
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(Not Covered) Proof of ![# ⋅ %] = ![#] ⋅ ![%]
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Theorem. If !, 7 independent, &[! ⋅ 7] = &[!] ⋅ &[7]
Proof Let !!, y!, $ = 1, 2,…be the possible values of ), *.

, ) ⋅ * =.
!
.
"
!! ⋅ /" ⋅ 0() = !! ∧ * = /")

=.
!
.
"
!! ⋅ /! ⋅ 0 ) = !! ⋅ 0(* = /")

=.
!
!! ⋅ 0 ) = !! ⋅ .

"
/" ⋅ 0(* = /")

= , ) ⋅ ,[*]
Note: NOT true in general; see earlier example &[X2]≠&[X]2

independence

Indy



(Not Covered) Proof of Var # + % = Var # + Var %
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Proof

Theorem. If !, 7 independent, Var ! + 7 = Var ! + Var 7

89: $ + .
= & $ + . ! − & $ + . !

= & $! + 2$. + .! − & $ + & . !

= & $! + 2 & $. + & .! − & $ ! + 2 & $ & . + & . !

= & $! − & $ ! + & .! − & . ! + 2 & $. − 2 & $ & .
= 89: $ + 89: . + 2 & $. − 2 & $ & .
= 89:($) + 89: .

equal by independence

linearity

indep
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Agenda

• Review: Variance and Independent Random Variables
• Properties of Independent Random Variables
• An Application:  Bloom Filters!
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Basic Problem

14

Problem: Store a subset O of a large set P.

Example. P = set of 128 bit strings
O = subset of strings of interest

P ≈ 2128

O ≈ 1000

Two goals: 
1. Very fast (ideally constant time) answers to queries “Is , ∈ O?” 

for any , ∈ P.
2. Minimal storage requirements.

O

__



Naïve Solution I – Constant Time
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Idea: Represent O as an array A with 2128 entries.

! " # … % …
" ! " ! " … ! !

A , = >1 if , ∈ B
0 if , ∉ B

Membership test: To check., ∈ O just check whether A , = 1.

Storage: Require storing 2128  bits, even for small O.
!"→ constant time!

#$

B = {0,2, … , K}



Naïve Solution II – Small Storage

16

Idea: Represent O as a list with |O| entries.

0 2 … K

Storage: Grows with |O| only !"

Membership test: Check , ∈ B requires time linear in |O|
(Can be made logarithmic by using a tree) #$

B = {0,2, … , K}



Hash Table
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Idea: Map elements in O into an array U of size V using a hash function W

hash function I: K → [M]

1
2

3
4 5

K-1
K

1

2
3

4
5

Membership test: To check , ∈ O just check whether U W(,) = ,

Storage: V elements (size of array)HIT
It



Hashing: collisions

Collisions occur when - , = - . for some distinct ,, . ∈ 1, 
i.e., two elements of set map to the same location

• Common solution: chaining – at each 
location (bucket) in the table, keep 
linked list of all elements that hash there.

18

1 2 3 4 5 (…

)!
)"

)#
* )! = * )"

O
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Hash Table
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Idea: Map elements in O into an array U of size V using a hash function W

Membership test: To check , ∈ O just check whether U W(,) = ,

Storage: V elements (size of array)

Challenge 2: Ensure
M = N( B )

Challenge 1: Ensure 
O , ≠ O P for 
most ,, P ∈ B

O



Good hash functions to keep collisions low

• The hash function ! is good iff it
– distributes elements uniformly across the V array locations so that 
– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
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Hashing: summary
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Hash Tables

• They store the data itself
• With a good hash function, the data 

is well distributed in the table and 
lookup times are small.

• However, they need at least as much 
space as all the data being stored, 
i.e., M = Ω( B )

Can we do 
better!?

In some cases, B is huge, 
or not known a-priori … 



Bloom Filters

to the rescue
(Named after Burton Howard Bloom)



Bloom Filters – Main points

• Probabilistic data structure.
• Close cousins of hash tables.
– But: Ridiculously space efficient

• Occasional errors, specifically false positives.
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Bloom Filters

• Stores information about a set of elements O ⊆ P.
• Supports two operations:

1. add(,) - adds , ∈ P to the set O
2. contains(,) – ideally: true if , ∈ O, false otherwise

24



Bloom Filters

• Stores information about a set of elements O ⊆ P.
• Supports two operations:

1. add(,) - adds , ∈ P to the set O
2. contains(,) – ideally: true if , ∈ O, false otherwise

25

Instead, relaxed guarantees:
• False → definitely not in O
• True → possibly in O

[i.e. we could have false positives]



Bloom Filters – Why Accept False Positives?

• Speed – both add and contains very very fast. 
• Space – requires a miniscule amount of space relative to 

storing all the actual items that have been added.
– Often just 8 bits per inserted item!

• Fallback mechanism – can distinguish false positives from 
true positives with extra cost
– Ok if mostly negatives expected + low false positive rate

26
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Bloom Filters: Application

• Google Chrome has a database of malicious URLs, but it takes a long 
time to query.

• Want an in-browser structure, so needs to be efficient and be space-
efficient

• Want it so that can check if a URL is in structure:
– If return False, then definitely not in the structure (don’t need to 

do expensive database lookup, website is safe)
– If return True, the URL may or may not be in the structure. Have to

perform expensive lookup in this rare case.

27



Bloom Filters – More Applications

• Any scenario where space and efficiency are important.
• Used a lot in networking
• Internet routers often use Bloom filters to track blocked IP 

addresses.
• In distributed systems when want to check consistency of data across 

different locations, might send a Bloom filter rather than the full set 
of data being stored.

• Google BigTable uses Bloom filters to reduce disk lookups
• And on and on…

28



Bloom Filters – Ingredients 

29

Basic data structure is a 2×4 binary array 
“the Bloom filter”
• 2 rows 56, … , 57 , each of size 4
• Think of each row as an 4-bit vector

2 different hash functions 76, … , 77: 9 → [4]

if

he K



function INITIALIZE(!,#)
for % = 1,… , !: do

*! = new bit vector of # 0s

Size of array 
associated to 
each hash 
function. 

Number of 
hash 
functions

for each hash 
function, initialize 
an empty bit 
vector of size M

Bloom Filters - Initialization

T



Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

function INITIALIZE((,*)
for , = 1,… , (: do

1& = new bit vector of * 0s

Bloom filter t of length R = 5 that uses S = 3 hash functions

I



function ADD(!)
for # = 1,… , (: do
*![ℎ! ! ] = 1

for each hash 
function I$

Index into T-th bit-vector, at index produced 
by hash function and set to 1

I$(,) → result of hash 
function I$ on ,

Bloom Filters: Add



Bloom filter t of length R = 5 that uses S = 3 hash functions

Bloom Filters: Example

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1
Index 

→ 
0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

add(“thisisavirus.com”)
ℎ1(“thisisavirus.com”) → 2 

IF



Bloom Filters: Example

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1
Index 

→ 
0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

add(“thisisavirus.com”)



add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ3(“thisisavirus.com”) → 4 

Bloom Filters: Example

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1
Index 

→ 
0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

ℎ1(“thisisavirus.com”) → 2 

Bloom filter t of length R = 5 that uses S = 3 hash functions



Bloom filter t of length R = 5 that uses S = 3 hash functions

Bloom Filters: Example

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1
Index 

→ 
0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Returns True if the bit vector V$ for each hash function has bit 1 at 
index determined by ℎ$(,), 

Returns False otherwise

Bloom Filters: Contains

function CONTAINS(,)
return Y$ ℎ$ , == 1 ∧ Y! ℎ! , == 1 ∧ ⋯∧ Y3 ℎ3 , == 1



contains(“thisisavirus.com”)

Bloom Filters: Example

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length R = 5 that uses S = 3 hash functions



contains(“thisisavirus.com”)

True

Bloom Filters: Example

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ1(“thisisavirus.com”) → 2 



contains(“thisisavirus.com”)

TrueTrue

Bloom Filters: Example

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 



contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Since all conditions satisfied, returns True (correctly)

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

add(“totallynotsuspicious.com”)



Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

add(“totallynotsuspicious.com”)
ℎ1(“totallynotsuspicious.com”) → 1 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(,)
for < = 1, … , 2: do

58[ℎ8 , ] = 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

Bloom Filters: False Positives

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Bloom filter t of length R = 5 that uses S = 3 hash functions



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

True

Bloom Filters: False Positives

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ1(“verynormalsite.com”) → 2 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrue

Bloom Filters: False Positives

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(')
return )! ℎ! ' == 1 ∧ )" ℎ" ' == 1 ∧⋯∧ )# ℎ# ' == 1

Since all conditions satisfied, returns True (incorrectly)

Bloom filter t of length R = 5 that uses S = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 



Bloom Filters – Three operations

• Set up Bloom filter for 1 = ∅

• Update Bloom filter for  1 ← 1 ∪ {,}

• Check if , ∈ 1

53

function INITIALIZE((,*)
for , = 1,… , (: do

1& = new bit vector of * 0s

function ADD(4)
for , = 1,… , (: do
1&[ℎ& 4 ] = 1

function CONTAINS())
return -! ℎ! ) == 1 ∧ -# ℎ# ) == 1 ∧ ⋯∧ -$ ℎ$ ) == 1



What you can’t do with Bloom filters

• There is no delete operation
– Once you have added something to a Bloom filter for B, it stays

• You can’t use a Bloom filter to name any element of O

But what you can do makes them very effective!

54



Brain Break



Analysis: False positive probability

Question: For an element , ∈ P, what is the probability that 
contains(,) returns true if add(,) was never executed before? 



Analysis: False positive probability

Question: For an element , ∈ P, what is the probability that 
contains(,) returns true if add(,) was never executed before? 

Probability over what?!        

Assumptions for the analysis:
• Each W& , is uniformly distributed in [V] for all , and @
• Hash function outputs for each W&are mutually independent (not 

just in pairs)
• Different hash functions are independent of each other

Over the choice of the \$, … , \3

Fx Vi hilx I win pub to leg i m

hilt hi y hily mutually indep

h ly



False positive probability – Events 

58

Assume we perform add ,$ , … ,add ,%
+ contains(,) for , ∉ {,$, … , ,%}

Event &̀ holds iff W& , ∈ {W& ,$ , … , W& ,% }

D false positive = D N6 ∩ N9 ∩ ⋯∩ N7 =Q
8:6

7
D(N8)

I2, … , I& independent 

h x hjcx mutuallyindep

added
s xn
e

isxes

PCEII
prenicaniagadhiathi't

ord h C



False positive probability – Events 

59

Event &̀ holds iff W& , ∈ {W& ,$ , … , W& ,% }

D N8; = S
<:6

=
D 78 , = T ⋅ D N8; 78 , = z)

Event &̀
8 holds iff W& , ≠ W& ,$ and … and W& , ≠ W& ,%

LTP

hi xu



False positive probability – Events 

60

6 &̀
8 W& , = b =

Event W$3 holds iff I$ , ≠ I$ ,2 and … 
and I$ , ≠ I$ ,%

6 W& ,$ ≠ b,… , W& ,% ≠ b | W& , = b

=c
9'$

%
6 W& ,9 ≠ b

= 6 W& ,$ ≠ b,… , W& ,% ≠ bIndependence of values 
of O$ on different inputs



False positive probability – Events 

61

6 &̀
8 W& , = b =

Event W$3 holds iff I$ , ≠ I$ ,2 and … 
and I$ , ≠ I$ ,%

6 W& ,$ ≠ b,… , W& ,% ≠ b | W& , = b

=c
9'$

%
6 W& ,9 ≠ b

=c
9'$

%
1 − 1

V = 1 − 1
V

%

6 &̀
8 =<

:'$

;
6 W& , = b ⋅ 6 &̀

8 W& , = z) = 1 − 1
V

%

= 6 W& ,$ ≠ b,… , W& ,% ≠ bIndependence of values 
of O$ on different inputs

Outputs of O$ uniformly spread



False positive probability – Events 

62

Event &̀ holds iff W& , ∈ {W& ,$ , … , W& ,% }
Event &̀

8 holds iff W& , ≠ W& ,$ and … and W& , ≠ W& ,%

6 &̀
8 = 1 − 1

V
%

FPR =Q
8:6

7
1 − D N8; = 1 − 1 − 1

4
> 7



False Positivity Rate – Example 

63

FPR = 1 − 1 − 1
4

> 7

e.g., Z = 5,000,000
2 = 30
4 = 2,500,000

FPR = 1.28%



Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with e = 30 and V = 2,500,000

(optimistic) 
5,000,000 ×40[ = 200MB 

2,500,000 ×30 = 75,000,000 bits 

< 10 MB 



Time

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 3%

100000 ×0.03 ×500ms1ms +
+2000×500 ms

102000 ≈ 25.51ms

Bloom filter lookup
malicious URLs

0.5 seconds DB lookup
false positives

total URLs



Bloom Filters typical of….

… randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!

66



More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: 
A, T, G, C
Suppose that the DNA sequence is random: the base in each position is 
selected independently of other positions, and for each particular 
position, one of the 4 bases is selected such that the letters G and C 
occur with probability 0.2 each and A and T occur with probability 0.3 
each.
In a sequence of length n, what is the expected number of occurrences 
of the sequence AATGTC?

67



More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C
Suppose that the DNA sequence is random where the base in each position is 
independent of other positions, and for each particular position, the letters G and C 
occur with probability 0.2 each and A and T occur with probability 0.3 each.
In a sequence of length n, what is the expected number of occurrences of the 
sequence AATGTC?

68


