CSE 312

Foundations of Computing II

Lecture 11: Wrap up independence or RVs + Bloom Filters

Midterm Monday, Feb 13 at 9:30. Info later today
Anonymous questions: www.slido.com/2671111

Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

$$
g(x)=(x-E(x))^{2}
$$

Recap Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[\left(X-\frac{\mathbb{E}[X])^{2}}{\text { const }}=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}\right.\right.
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$ conots

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Questions
The variance of a (discrete) $\mathrm{RV} X$ is

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \\
& \left.=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(x)\right)^{2} \geqslant 0
\end{aligned}
$$

- Can the variance of a random variable be negative?
- Is $\operatorname{Var}(X+5)=\operatorname{Var}(X)+5$?

$$
\operatorname{Van}(x+5)=\operatorname{Van}(x)
$$

- Is it true that if $\operatorname{Var}(X)=0$, then X is a constant?

$$
\text { Yes } \quad x=\cos t=E(x)
$$

- What is the relationship between $E\left(X^{2}\right)$ and $[E(X)]^{2}$?

$$
[E(x))^{2} \leqq E\left(x^{2}\right)
$$

$$
\forall x, y \in \mathbb{R}
$$

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n},

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all outcomes!

Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Example - Coin Tosses
We flip n independent coins, each one heads with probability p

$$
\begin{aligned}
& \left\{X_{i}=\left\{\begin{array}{l}
1, i^{\text {th }} \text { outcome is heads } \\
0, \\
i^{\text {th }} \text { outcome is tails. }
\end{array}\right.\right. \\
& -Z=\text { number of heads }
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow E\left(X_{i}\right) & =p_{n} \\
E(2) & =\sum_{i=1}^{n} E\left(X_{i}\right)=n p
\end{aligned} \\
& x_{i}^{\prime} s \operatorname{mop} \Rightarrow \operatorname{Van}(2)=\sum_{i=1}^{n} \frac{V_{a}\left(x_{i}\right)}{\pi}=n p(1-p) \text {. } \\
& \operatorname{Vr}\left(x_{i}\right)=E\left(x_{i}^{2}\right)-\left(E\left(x_{i}\right)\right)^{2}=p p^{2}=\rho\left(r_{p}\right)
\end{aligned}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]
$\longrightarrow \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \operatorname{Note} \operatorname{Var}\left(X_{i}\right)=p(1-p)$

indp
 (Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

```
Proof
\[
\begin{aligned}
& \text { Let } x_{i}, \mathrm{y}_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \begin{aligned}
\mathbb{E}[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
\end{aligned}
\]
Note: NOT true in general; see earlier example \(\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}\)
```


(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

Agenda

- Review: Variance and Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of large set U.
Example. $U=$ set of 128 bit strings
$S=$ subset of strings of interest

$$
|U| \approx 2^{128}
$$

$|S| \approx 1000$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Naïve Solution I - Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$
\mathrm{A}[x]= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}
$$

Membership test: To check. $x \in S$ just check whether $\mathrm{A}[x]=1$.
\rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small S.

Naïve Solution II - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function \mathbf{h} Membership test: To check $x \in S$ just check whether $\frac{\ln (x)}{A}=x$
Storage: m elements (size of array)

hash function $\mathbf{h}: U \rightarrow[m]$

Hashing: collisions

Collisions occur when $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ for some distinct $x, y \in S$,
i.e., two elements of set map to the same location

- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.

Hash Table

Idea: Map elements in S into an array A of size m using a hash function \mathbf{h}
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Good hash functions to keep collisions low

- The hash function \boldsymbol{h} is good iff it
- distributes elements uniformly across the m array locations so that
- pairs of elements are mapped independently
"Universal Hash Functions" - see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
i.e., $m=\Omega(|S|)$

Bloom Filters

 to the rescue(Named after Burton Howard Bloom)

Bloom Filters - Main points

- Probabilistic data structure.
- Close cousins of hash tables.
- But: Ridiculously space efficient
- Occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$ - adds $x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)-\operatorname{adds} x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Instead, relaxed guarantees:

- False \rightarrow definitely not in S
- True \rightarrow possibly in S
[i.e. we could have false positives]

Bloom Filters - Why Accept False Positives?

- Speed - both add and contains very very fast.
- Space - requires a miniscule amount of space relative to storing all the actual items that have been added.
- Often just 8 bits per inserted item!
- Fallback mechanism - can distinguish false positives from true positives with extra cost
- Ok if mostly negatives expected + low false positive rate

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be spaceefficient
- Want it so that can check if a URL is in structure:
- If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
- If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Bloom Filters - More Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- Internet routers often use Bloom filters to track blocked IP addresses.
[In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- And on and on...

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array "the Bloom filter"

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow$ [m]

Bloom Filters - Initialization

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function INITIALIZE(k,m)
    for i=1, .., k: do
        ti
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Add

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function \(\operatorname{ADD}(x)\)
    for \(\frac{i=1, \ldots, k}{t_{i}\left[h_{i}(x)\right]}=1\)
```

 \(h_{1}\) ("thisisavirus.com") \(\rightarrow 2\)
 | Index
 \rightarrow | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| t_{1} | 0 | 0 | 0 | 0 | 0 |
| t_{2} | 0 | 0 | 0 | 0 | 0 |
| t_{3} | 0 | 0 | 0 | 0 | 0 |

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Contains

function $\operatorname{contains}(x)$ return $t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$

Returns True if the bit vector t_{i} for each hash function has bit 1 at index determined by $h_{i}(x)$,
Returns False otherwise

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS (x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

contains("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{CONTAINS}(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \end{aligned}$	$t_{k}\left[h_{k}(x)\right]$	contains("thisisavirus.com")				
True		$\begin{aligned} & h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \end{aligned}$				
	Index \rightarrow	0	1	2	3	4
	t_{1}	0	0	1	0	0
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINs}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")				
True	True	True		$\begin{aligned} & h_{1}(\text { "thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { "thisisavirus.com") } \rightarrow 1 \\ & h_{3}(\text { "thisisavirus.com") } \rightarrow 4 \end{aligned}$			
		Index $\rightarrow$	0	1	2	3	4
		$t_{1}$	0	0	1	0	0
		$t_{2}$	0	1	0	0	0
		$t_{3}$	0	0	0	0	1

## Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINS}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains("thisisavirus.com")			
True True	True					
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly)						
						0
	t_{2}	0	1	0	0	0
	t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
add("totallynotsuspicious.com")
function $\operatorname{ADD}(x)$

$$
\begin{gathered}
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("totallynotsuspicious.com") h_{1} ("totallynotsuspicious.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com")
h_{1} ("totallynotsuspicious.com") $\rightarrow 1$
h_{2} ("totallynotsuspicious.com") $\rightarrow 0$
h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do $t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com") h_{1} ("totallynotsuspicious.com") $\rightarrow 1$ h_{2} ("totallynotsuspicious.com") $\rightarrow 0$ h_{3} ("totallynotsuspicious.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS}(x
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	1	1	0	0
t_{2}	1	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{contains}(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1 \end{aligned}$		contains("verynormalsite.com")				
True	True	$\begin{aligned} & h_{1} \text { ("verynormalsite.com") } \rightarrow 2 \\ & h_{2} \text { ("verynormalsite.com") } \rightarrow 0 \end{aligned}$				
		0	1	2	3	4
		0	1	1	0	0
		1	1	0	0	0
		0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{contains}(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1 \end{aligned}$				contains("verynormalsite.com")			
True	True	True		$\begin{aligned} & h_{1}(\text { "verynormalsite.com") } \rightarrow 2 \\ & h_{2}(\text { "verynormalsite.com") } \rightarrow 0 \\ & h_{3}(\text { "verynormalsite.com") } \rightarrow 4 \end{aligned}$			
		$\xrightarrow{\text { Index }}$	0	1	2	3	4
		t_{1}	0	1	1	0	0
		t_{2}	1	1	0	0	0
		t_{3}	0	0	0	0	1

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{CONTAINS}(x)$$\text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1$			contains("verynormalsite.com")									
True True	True h_{1}		$\begin{aligned} & h_{1}(\text { "verynormalsite.com") } \rightarrow 2 \\ & h_{2}(\text { "verynormalsite.com") } \rightarrow 0 \\ & h_{3}(\text { "verynormalsite.com") } \rightarrow 4 \end{aligned}$									
	Index	0	1	2	3	4						
Since all conditions satisfied, returns True (incorrectly)												
	t_{2}		1	0	0	0						
	t_{3}	0	0	0	0	1						

Bloom Filters - Three operations

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function } \operatorname{INITIALIZE}(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

$$
\begin{gathered}
\text { function } \operatorname{ADD}(x) \\
\text { for } i=1, \ldots, k \text { : do } \\
t_{i}\left[h_{i}(x)\right]=1
\end{gathered}
$$

- Check if $x \in S$

```
function CONTAINS(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```


What you can't do with Bloom filters

- There is no delete operation
- Once you have added something to a Bloom filter for S, it stays
- You can't use a Bloom filter to name any element of S

But what you can do makes them very effective!

Brain Break

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains (x) returns true if $\operatorname{add}(x)$ was never executed before?

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains (x) returns true if $\operatorname{add}(x)$ was never executed before?

Probability over what?! Over the choice of the $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}$

Assumptions for the analysis:

- Each $\mathbf{h}_{i}(x)$ is uniformly distributed in [m] for all x and i
- Hash function outputs for each \mathbf{h}_{i} are mutually independent (not just in pairs)
- Different hash functions are independent of each other

$$
\begin{aligned}
& \forall x, \forall i \quad h_{i}(x)=l \text { wimpub } \frac{1}{m} \quad l e\left\{0, y_{1}, x^{n-1}\right\} \\
& h_{i}(x) \text {, hi(y), hi(2) mutually ind. }
\end{aligned}
$$

$h_{i}(x) \quad h_{j}(x) \quad$ mituallyinde

False positive probability - Events \quad added $S=\{\underbrace{\left\{x_{1}, \ldots, x_{n}\right\}}_{\text {is } x \in S}\}$
Assume we perform $\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)$

$$
+\operatorname{contains(x)} \text { for } x \notin\left\{x_{1}, \ldots, x_{n}\right\}
$$

Event E_{i} holds of $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$

False positive probability - Events
Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)
$$

LTP

False positive probability - Events

Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and ... and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Independence of values } \\
\text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{array} \\
& \longrightarrow
\end{aligned}=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)
$$

False positive probability - Events

Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right)
$$

$$
\begin{aligned}
& \text { Independence of values } \\
& \text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{aligned} \longrightarrow P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right)
$$

Outputs of \boldsymbol{h}_{i} uniformly spread

$$
\begin{aligned}
& \text { tputs of } \boldsymbol{h}_{i} \text { uniformly spread } \\
& \longrightarrow P\left(E_{i}^{c}\right)=\prod_{j=1}^{n}\left(1-\frac{1}{m}\right)=\left(1-\frac{1}{m}\right)^{n} \\
& \longrightarrow\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)=\left(1-\frac{1}{m}\right)^{n}
\end{aligned}
$$

False positive probability - Events

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
\begin{aligned}
P\left(E_{i}^{c}\right) & =\left(1-\frac{1}{m}\right)^{n} \\
& \longrightarrow \mathrm{FPR}=\prod_{i=1}^{k}\left(1-P\left(E_{i}^{c}\right)\right)=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
\end{aligned}
$$

False Positivity Rate_- Example

$$
\operatorname{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
$$

$$
\text { e.g., } \begin{aligned}
& n=5,000,000 \\
& \\
& k=30 \\
& m=2,500,000
\end{aligned}
$$

$$
F P R=1.28 \%
$$

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k=30$ and $m=2,500,000$

```
Hash Table
(optimistic)
5,000,000 ×40B = 200MB
```


Bloom Filter

$2,500,000 \times 30=75,000,000$ bits
$<10 \mathrm{MB}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%
0.5 seconds DB lookup

Bloom filter lookup

Bloom Filters typical of....

... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases:
A, T, G, C
Suppose that the DNA sequence is random: the base in each position is selected independently of other positions, and for each particular position, one of the 4 bases is selected such that the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each.
In a sequence of length n , what is the expected number of occurrences of the sequence AATGTC?

More practice with linearity of expectation

A DNA sequence can be thought of as a string made up of 4 bases: A, T, G, C Suppose that the DNA sequence is random where the base in each position is independent of other positions, and for each particular position, the letters G and C occur with probability 0.2 each and A and T occur with probability 0.3 each. In a sequence of length n, what is the expected number of occurrences of the sequence AATGTC?

