CSE 312 Foundations of Computing II

Lecture 10: Variance and Independence of RVs

Anonymous questions: www.slido.com/3296240

Agenda

- Recap + LOTUS <
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathbb{RV} X: \Omega \to \mathbb{R}$, the **expectation** or **expected value** or **mean** of *X* is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n, b \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \cdots + a_nX_n + b] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n] + b.$

Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$

E.g., $X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of g(X)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of g(X) is

$$\mathbb{E}[g(X)] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)$$

or equivalently

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}(\Omega)} g(x) \cdot P(X = x) = \sum_{x \in \Omega_X} g(x) \cdot p_X(x)$$

Also known as LOTUS: "Law of the unconscious statistician

(nothing special going on in the discrete case)

Example: Returning Homeworks

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x)$$
$$\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot P(X = x)$$
iks.

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let *X* be the number of students who get their own HW

Pr(w)	ω	$X(\boldsymbol{\omega})$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

 $\mathbb{E}[X] = 3 \cdot P(X = 3) + 1 \cdot P(X = 1) + 0 \cdot P(X = 0)$

Agenda

- LOTUS
- Variance 🛛 🗨
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

 W_1 = payoff in a round of Game 1 $P(W_1 = 2) = \frac{1}{3}$, $P(W_1 = -1) = \frac{2}{3}$

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$W_1 = \text{payoff in a round of Game 1}$$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$
 $\mathbb{E}[W_1] = 0$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

$$W_2 = \text{payoff in a round of Game 2}$$

 $P(W_2 = 10) = \frac{1}{3}, P(W_2 = -5) = \frac{2}{3}$
 $\mathbb{E}[W_2] = 0$

Same expectation, but clearly a very different distribution. We want to capture the difference – New concept: Variance

New quantity (random variable): How far from the expectation? $W_1 - \mathbb{E}[W_1]$

New quantity (random variable): How far from the expectation?

 $W_{1} - \mathbb{E}[W_{1}]$ $\mathbb{E}[W_{1} - \mathbb{E}[W_{1}]]$ $= \mathbb{E}[W_{1}] - \mathbb{E}[\mathbb{E}[W_{1}]]$ $= \mathbb{E}[W_{1}] - \mathbb{E}[W_{1}]$ = 0

13

A better quantity (random variable): How far from the expectation?

$$\mathbb{E}[(W_2 - \mathbb{E}[W_2])^2] = \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100 = 50$$

16

We say that W_2 has "higher variance" than W_1 .

$$Var(W) = (W - \mathbb{E}[W])^2$$

Variance

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

$$Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^2$$

$$\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot P(X = x)$$

 $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

 $Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^{2}$ = $\frac{1}{6} [(1 - 3.5)^{2} + (2 - 3.5)^{2} + (3 - 3.5)^{2} + (4 - 3.5)^{2} + (5 - 3.5)^{2} + (6 - 3.5)^{2}]$ = $\frac{2}{6} [2.5^{2} + 1.5^{2} + 0.5^{2}] = \frac{2}{6} [\frac{25}{4} + \frac{9}{4} + \frac{1}{4}] = \frac{35}{12} \approx 2.91677 \dots$

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

Definition. The variance of a (discrete) RV X is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Variance

Theorem.
$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Proof: $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ $= \mathbb{E}[X^2 - 2\mathbb{E}[X] \cdot X + \mathbb{E}[X]^2]$ $= \mathbb{E}(X^2) - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2$ (linearity of expectation!) $\mathbb{E}[X^2] \text{ and } \mathbb{E}[X]^2$ are different !

Variance – Example 1

X fair die

- $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$
- $\mathbb{E}[X] = \frac{21}{6}$
- $\mathbb{E}[X^2] = \frac{91}{6}$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$$

Variance – Properties

Definition. The variance of a (discrete) RV X is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

26

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so $\mathbb{E}[X_A] = P(A) = p$

$\operatorname{Var}(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 =$

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so $\mathbb{E}[X_A] = P(A) = p$

Since X_A only takes on values 0 and 1, we always have $X_A^2 = X_A$ so

 $Var(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1 - p)$

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Proof by counter-example:

- Let *X* be a r.v. with pmf *P*(*X* = 1) = *P*(*X* = −1) = 1/2 – What is E[*X*] and Var(*X*)?
- Let Y = -X

– What is $\mathbb{E}[Y]$ and Var(Y)?

What is Var(X + Y)?

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all *x*, *y*,

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

Intuition: Knowing X doesn't help you guess Y and vice versa

Definition. The random variables $X_1, ..., X_n$ are **(mutually) independent** if for all $x_1, ..., x_n$,

$$P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

Let X be the number of heads in n independent coin flips of the same coin. Let $Y = X \mod 2$ be the parity (even/odd) of X. Are X and Y independent?

Example

Make 2n independent coin flips of the same coin. Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .

$$\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$$
independence
$$= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$$

$$= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

39

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

-
$$X_i = \begin{cases} 1, \ i^{\text{th}} \text{ outcome is heads} \\ 0, \ i^{\text{th}} \text{ outcome is tails.} \end{cases}$$

- $Z = \text{number of heads}$
What is $\mathbb{E}[Z]$? What is $\text{Var}(Z)$?
P($Z = k$) = $\binom{n}{k}p^k(1-p)^{n-k}$
Note: X_1, \dots, X_n are mutually independent! [Verify it formally!]
Var(Z) = $\sum_{i=1}^{n} \text{Var}(X_i) = n \cdot p(1-p)$
Note $\text{Var}(X_i) = p(1-p)$

The **variance** of a (discrete) RV *X* is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

- Can the variance of a random variable be negative?
- Is Var(X + 5) = Var(X) + 5?
- Is it true that if Var(X) = 0, then X is a constant?
- What is the relationship between $E(X^2)$ and $[E(X)]^2$?

Independence of random variables

- Suppose X and Y are independent indicator random variables taking the value 1 with probability ½, and let Z = XY
 - Are X and Z independent?
 - Are Y and Z independent?
- Is it true that if X and Y are independent, and Y and Z are independent, then X and Z are independent?

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic ProblemProblem: Store a subset S of a large set U.Example. U = set of 128 bit stringsS = subset of strings of interest $|U| \approx 2^{128}$ S = subset of strings of interest

Two goals:

- **1.** Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Membership test: To check. $x \in S$ just check whether A[x] = 1. \rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with *S* entries.

$$S = \{0, 2, \dots, K\}$$

Storage: Grows with |S| only

Membership test: Check $x \in S$ requires time linear in |S|

(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function **h** is good iff it
 - distributes elements uniformly across the m array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
 i.e., m = Ω(|S|)

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Next time: Bloom Filters

- <u>Probabilistic</u> data structure.
- Close cousins of hash tables.
 - But: <u>Ridiculously</u> space efficient
- <u>Occasional</u> errors, specifically false positives.

