
CSE 312

Foundations of Computing II
Lecture 10: Variance and Independence of RVs

Anonymous questions: www.slido.com/3296240
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Agenda

• Recap + LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Review Expected Value of a Random Variable

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑋 is   

𝔼 𝑋 = (
!∈#

𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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Intuition: “Weighted average” of the possible outcomes (weighted by probability)

= (
$∈#!

𝑥 ⋅ 𝑝%(𝑥)𝔼 𝑋 = (
$∈#!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Linearity of Expectation – Even stronger

4

Theorem. For any random variables 𝑋&, … , 𝑋', and real numbers 
𝑎&, … , 𝑎' , 𝑏 ∈ ℝ,

𝔼 𝑎&𝑋& +⋯+ 𝑎'𝑋' + 𝑏 = 𝑎&𝔼 𝑋& +⋯+ 𝑎'𝔼 𝑋' + 𝑏.   

Very important: In general, we do not have 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]



Linearity is special!

In general 𝔼 𝑔(𝑋) ≠ 𝑔 𝔼 𝑋

E.g., 𝑋 = : +1 with prob 1/2−1 with prob 1/2

Then: 𝔼[𝑋(] ≠ 𝔼[𝑋](

How DO we compute 𝔼[𝑔 𝑋 ]? 



Expected Value of 𝑔(𝑋)

Definition. Given a discrete RV 𝑋: Ω → ℝ, the expectation or expected 
value or mean of 𝑔(𝑋) is   

𝔼 𝑔(𝑋) = (
!∈#

𝑔 𝑋 𝜔 ⋅ 𝑃(𝜔)

or equivalently
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= (
$∈#!

𝑔(𝑥) ⋅ 𝑝%(𝑥)𝔼 𝑔(𝑋) = (
$∈)(#)

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)

Also known as LOTUS: “Law of the unconscious statistician

(nothing special going on in the discrete case)



Example: Returning Homeworks

• Class with 3 students, randomly hand back homeworks.       
All permutations equally likely.

• Let 𝑋 be the number of students who get their own HW
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𝐏𝐫 𝝎 𝝎 𝑿(𝝎)

1/6 1,	2,	3 3
1/6 1,	3,	2 1
1/6 2,	1,	3 1
1/6 2,	3,	1 0
1/6 3,	1,	2 0
1/6 3,	2,	1 1

𝔼 𝑋 = 3 ⋅ 𝑃 𝑋 = 3 + 1 ⋅ 𝑃 𝑋 = 1 + 0 ⋅ 𝑃 𝑋 = 0

𝔼 𝑋 = /
!∈#!

𝑥 ⋅ 𝑃(𝑋 = 𝑥)

𝔼 𝑔(𝑋) = /
!∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)



Agenda

• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Which game would you rather play?
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Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

𝑊& = payoff in a round of Game 1

𝑃 𝑊& = 2 = &
4
, 𝑃 𝑊& = −1 = (

4



Which game would you rather play?

10

Game 1: In every round, you win $2 with probability 1/3, lose $1 with 
probability 2/3. 

Game 2: In every round, you win $10 with probability 1/3, lose $5 with 
probability 2/3. 

𝑊& = payoff in a round of Game 1

𝑃 𝑊& = 2 = &
4
, 𝑃 𝑊& = −1 = (

4

𝔼[𝑊&] = 0

𝑊( = payoff in a round of Game 2
𝔼[𝑊(] = 0

𝑃 𝑊( = 10 = &
4
, 𝑃 𝑊( = −5 = (

4



Two Games
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𝟎 +𝟏𝟎−𝟓

𝟎−𝟏 𝟐

𝑃 𝑊/ = 2 = /
0
, 𝑃 𝑊/ = −1 = 1

0

𝑃 𝑊1 = 10 = /
0
, 𝑃 𝑊1 = −5 = 1

0

2/3 1/3

1/3
2/3

Same expectation, but clearly a very different distribution. 
We want to capture the difference – New concept: Variance

Somehow, Game 2 has higher           
volatility / exposure!



Variance (Intuition, First Try)
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𝟎−𝟏 𝟐

𝑃 𝑊/ = 2 = /
0
, 𝑃 𝑊/ = −1 = 1

0

2/3
1/3

New quantity (random variable): How far from the expectation?

𝔼[𝑊&] = 0

𝑊& − 𝔼[𝑊&]



Variance (Intuition, First Try)
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𝟎−𝟏 𝟐

𝑃 𝑊/ = 2 = /
0
, 𝑃 𝑊/ = −1 = 1

0

2/3
1/3

New quantity (random variable): How far from the expectation?

𝑊& − 𝔼[𝑊&]
𝔼[𝑊& − 𝔼 𝑊& ]

= 𝔼 𝑊& − 𝔼 𝔼 𝑊&

= 𝔼 𝑊& − 𝔼 𝑊&
= 0

𝔼[𝑊&] = 0



Variance (Intuition, Better Try)
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𝟎−𝟏 𝟐

𝑃 𝑊/ = 2 = /
0
, 𝑃 𝑊/ = −1 = 1

0

2/3
1/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊& − 𝔼 𝑊&
(]

𝔼[𝑊&] = 0

𝔼 𝑔(𝑋) = /
!∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)



Variance (Intuition, Better Try)
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𝟎−𝟏 𝟐

𝑃 𝑊/ = 2 = /
0
, 𝑃 𝑊/ = −1 = 1

0

2/3
1/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊& − 𝔼 𝑊&
(]

=
2
3
⋅ 1 +

1
3
⋅ 4

= 2

𝔼[𝑊&] = 0



Variance (Intuition, Better Try)
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𝟎 +𝟏𝟎−𝟓

𝑃 𝑊1 = 10 = /
0
, 𝑃 𝑊1 = −5 = 1

0 1/3
2/3

A better quantity (random variable): How far from the expectation?

𝔼[ 𝑊( − 𝔼 𝑊(
(]

=
2
3
⋅ 25 +

1
3
⋅ 100

= 50

𝔼[𝑊1] = 0



Variance
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Var = 50

Var = 2

We say that 𝑊( has “higher variance” than 𝑊&.  

𝑊1

𝑊/
𝟎−𝟏 𝟐

2/3
1/3

𝟎 +𝟏𝟎−𝟓

1/3
2/3

Var(W) = 𝑊 − 𝔼[𝑊] (



Variance
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] ( = ∑$ 𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] (

Standard deviation: 𝜎 𝑋 = Var(𝑋) Recall 𝔼[𝑋] is a 
constant, not a random 
variable itself. 

Intuition: Variance (or standard deviation) is a quantity that measures, 
in expectation, how “far” the random variable is from its expectation. 



Variance – Example 1

𝑋 fair die
• 𝑃 𝑋 = 1 = ⋯ = 𝑃 𝑋 = 6 = 1/6
• 𝔼 𝑋 = 3.5

19

Var X =(
$

𝑃 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼[𝑋] (

𝔼 𝑔(𝑋) = /
!∈#!

𝑔(𝑥) ⋅ 𝑃(𝑋 = 𝑥)

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] 1



Variance – Example 1

𝑋 fair die
• 𝑃 𝑋 = 1 = ⋯ = 𝑃 𝑋 = 6 = 1/6
• 𝔼[𝑋] = 3.5

20

Var X = ∑$ 𝑃 𝑋 = 𝑥 ⋅ 𝑥 − 𝔼[𝑋] (

=
1
6

1 − 3.5 1 + 2 − 3.5 1 + 3 − 3.5 1 + 4 − 3.5 1 + 5 − 3.5 1 + 6 − 3.5 1

=
2
6
2.51 + 1.51 + 0.51 =

2
6
25
4
+
9
4
+
1
4
=
35
12

≈ 2.91677…



Variance in Pictures

Captures how much 
“spread’ there is in a pmf

All pmfs have same 
expectation

21



Agenda

• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] ( = ∑$ 𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] (

Theorem. Var 𝑋 = 𝔼[𝑋(] − 𝔼[𝑋](



Variance
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Theorem. Var 𝑋 = 𝔼[𝑋(] − 𝔼 𝑋 (

Proof: Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] !

= 𝔼 𝑋! − 2𝔼[𝑋] ⋅ 𝑋 + 𝔼[𝑋]!

= 𝔼 𝑋! − 2𝔼[𝑋]𝔼[𝑋] + 𝔼 𝑋 !

= 𝔼[𝑋!] − 𝔼 𝑋 ! (linearity of expectation!)

Recall 𝔼[𝑋] is a constant

𝔼[𝑋1] and 𝔼[𝑋]1
are different !



Variance – Example 1

𝑋 fair die
• ℙ 𝑋 = 1 = ⋯ = ℙ 𝑋 = 6 = 1/6

• 𝔼 𝑋 = (&
5

• 𝔼[𝑋(] = 6&
5

25

Var X = 𝔼[𝑋(] − 𝔼[𝑋](=
91
6
−

21
6

(

=
105
36

≈ 2.91677



Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] ( = ∑$ 𝑝% 𝑥 ⋅ 𝑥 − 𝔼[𝑋] (

Theorem. Var 𝑋 = 𝔼[𝑋(] − 𝔼[𝑋](

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎( ⋅ Var 𝑋



Variance of Indicator Random Variables

Suppose that 𝑋" is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so

27

𝔼 𝑋" = 𝑃 𝐴 = 𝑝

Var 𝑋" = 𝔼 𝑋"! − 𝔼 𝑋" ! =



Variance of Indicator Random Variables

Suppose that 𝑋" is an indicator RV for event 𝐴 with 𝑃(𝐴) = 𝑝 so

Since 𝑋" only takes on values 0 and 1, we always have 𝑋"! = 𝑋"
so

28

𝔼 𝑋" = 𝑃 𝐴 = 𝑝

Var 𝑋" = 𝔼 𝑋"! − 𝔼 𝑋" ! = 𝔼 𝑋" − 𝔼 𝑋" ! = 𝑝 − 𝑝! = 𝑝(1 − 𝑝)



In General, Var 𝑋 + 𝑌 ≠ Var 𝑋 + Var(𝑌)

Proof by counter-example:
• Let 𝑋 be a r.v. with pmf 𝑃 𝑋 = 1 = 𝑃 𝑋 = −1 = 1/2
– What is 𝔼[𝑋] and Var(𝑋)?

• Let 𝑌 = −𝑋
– What is 𝔼[𝑌] and Var(𝑌)?

What is Var(𝑋 + 𝑌)?

29



Brain Break



Agenda

• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Random Variables and Independence

32

Definition. Two random variables 𝑋, Y are (mutually) independent if 
for all 𝑥, 𝑦,

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 ⋅ 𝑃(𝑌 = 𝑦)

Definition. The random variables 𝑋&, … , 𝑋' are (mutually) independent if 
for all 𝑥&, … , 𝑥',

𝑃 𝑋& = 𝑥&, … , 𝑋' = 𝑥' = 𝑃 𝑋& = 𝑥& ⋯𝑃(𝑋' = 𝑥')

Note: No need to check for all subsets, but need to check for all outcomes! 

Intuition: Knowing 𝑋 doesn’t help you guess 𝑌 and vice versa 

Comma is shorthand for AND



Example

Let 𝑋 be the number of heads in 𝑛 independent coin flips of the 
same coin. Let 𝑌 = 𝑋 mod 2 be the parity (even/odd) of 𝑋. 
Are 𝑋 and 𝑌 independent?

33



Example

Make 2𝑛 independent coin flips of the same coin. 
Let 𝑋 be the number of heads in the first 𝑛 flips and 𝑌 be the 
number of heads in the last 𝑛 flips.
Are 𝑋 and 𝑌 independent?

35



Agenda

• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
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Important Facts about Independent Random Variables

38

Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Corollary. If 𝑋&, 𝑋(, …, 𝑋' mutually independent, 

Var (
78&

'

𝑋7 =(
7

'

Var(𝑋7)



(Not Covered) Proof of 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Proof Let 𝑥(, y(, 𝑖 = 1, 2,…be the possible values of 𝑋, 𝑌.

𝔼 𝑋 ⋅ 𝑌 =.
(

.
)

𝑥( ⋅ 𝑦) ⋅ 𝑃(𝑋 = 𝑥( ∧ 𝑌 = 𝑦))

=.
(

.
)

𝑥( ⋅ 𝑦( ⋅ 𝑃 𝑋 = 𝑥( ⋅ 𝑃(𝑌 = 𝑦))

=.
(

𝑥( ⋅ 𝑃 𝑋 = 𝑥( ⋅ .
)

𝑦) ⋅ 𝑃(𝑌 = 𝑦))

= 𝔼 𝑋 ⋅ 𝔼[𝑌]

Note: NOT true in general; see earlier example 𝔼[X2]≠𝔼[X]2

independence



(Not Covered) Proof of Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌
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Proof

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

𝑉𝑎𝑟 𝑋 + 𝑌

= 𝔼 𝑋 + 𝑌 1 − 𝔼 𝑋 + 𝑌 1

= 𝔼 𝑋1 + 2𝑋𝑌 + 𝑌1 − 𝔼 𝑋 + 𝔼 𝑌 1

= 𝔼 𝑋1 + 2 𝔼 𝑋𝑌 + 𝔼 𝑌1 − 𝔼 𝑋 1 + 2 𝔼 𝑋 𝔼 𝑌 + 𝔼 𝑌 1

= 𝔼 𝑋1 − 𝔼 𝑋 1 + 𝔼 𝑌1 − 𝔼 𝑌 1 + 2 𝔼 𝑋𝑌 − 2 𝔼 𝑋 𝔼 𝑌

= 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2 𝔼 𝑋𝑌 − 2 𝔼 𝑋 𝔼 𝑌

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟 𝑌
equal by independence

linearity



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋7 = :1, 𝑖
th outcome is heads

0, 𝑖th outcome is tails.
- 𝑍 = number of heads

What is 𝔼[𝑍]?    What is Var(𝑍)?

41

𝑃 𝑋2 = 1 = 𝑝
𝑃 𝑋2 = 0 = 1 − 𝑝

𝑃 𝑍 = 𝑘 =

Fact. 𝑍 = ∑78&' 𝑋7



Example – Coin  Tosses

We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋7 = :1, 𝑖
th outcome is heads

0, 𝑖th outcome is tails.
- 𝑍 = number of heads

What is 𝔼[𝑍]?    What is Var(𝑍)?

42

𝑃 𝑋2 = 1 = 𝑝
𝑃 𝑋2 = 0 = 1 − 𝑝

𝑃 𝑍 = 𝑘 = 3
4 𝑝

4 1 − 𝑝 354

Fact. 𝑍 = ∑78&' 𝑋7

Note: 𝑋&, … , 𝑋' are mutually independent! [Verify it formally!]

Var 𝑍 =(
78&

'

Var 𝑋7 = 𝑛 ⋅ 𝑝(1 − 𝑝) Note Var 𝑋2 = 𝑝(1 − 𝑝)



Questions

• Can the variance of a random variable be negative?

• Is Var(X + 5) = Var (X) + 5?

• Is it true that if Var(X) = 0, then X is a constant?

• What is the relationship between E(X2) and [E(X)]2  ?

43

The variance of a (discrete) RV 𝑋 is

Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] 1 = ∑6 𝑝7 𝑥 ⋅ 𝑥 − 𝔼[𝑋] 1



Independence of random variables

• Suppose X and Y are independent indicator random variables 
taking the value 1 with probability ½, and let Z = XY
– Are X and Z independent?
– Are Y and Z independent?

• Is it true that if X and Y are independent, and Y and Z are 
independent, then X and Z are independent?

44



Agenda

• LOTUS
• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
• An Application:  Bloom Filters!
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Basic Problem

46

Problem: Store a subset 𝑆 of a large set 𝑈.

Example. 𝑈 = set of 128 bit strings
𝑆 = subset of strings of interest

𝑈 ≈ 2128

𝑆 ≈ 1000

Two goals: 
1. Very fast (ideally constant time) answers to queries “Is 𝑥 ∈ 𝑆?” 

for any 𝑥 ∈ 𝑈.
2. Minimal storage requirements.



Naïve Solution I – Constant Time

47

Idea: Represent 𝑆 as an array A with 2128 entries.

𝟎 𝟏 𝟐 … 𝑲 …

𝟏 𝟎 𝟏 𝟎 𝟏 … 𝟎 𝟎

A 𝑥 = J1 if 𝑥 ∈ 𝑆
0 if 𝑥 ∉ 𝑆

Membership test: To check.𝑥 ∈ 𝑆 just check whether A 𝑥 = 1.

Storage: Require storing 2128  bits, even for small 𝑆.

👍😀→ constant time!

👎😢

𝑆 = {0,2, … , K}



Naïve Solution II – Small Storage

48

Idea: Represent 𝑆 as a list with |𝑆| entries.

0 2 … K

Storage: Grows with |𝑆| only 👍😀

Membership test: Check 𝑥 ∈ 𝑆 requires time linear in |𝑆|
(Can be made logarithmic by using a tree) 👎😢

𝑆 = {0,2, … , K}



Hash Table

49

Idea: Map elements in 𝑆 into an array 𝐴 of size 𝑚 using a hash function 𝐡

hash function 𝐡: 𝑈 → [𝑚]

1
2

3
4 5

K-1
K

1

2
3

4
5

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)



Hash Table

50

Idea: Map elements in 𝑆 into an array 𝐴 of size 𝑚 using a hash function 𝐡

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)

Challenge 2: Ensure
𝑚 = 𝑂( 𝑆 )

Challenge 1: Ensure 
𝒉 𝑥 ≠ 𝒉 𝑦 for 
most 𝑥, 𝑦 ∈ 𝑆



Hashing: collisions

Collisions occur when 𝒉 𝑥 = 𝒉 𝑦 for some distinct 𝑥, 𝑦 ∈ 𝑆, 
i.e., two elements of set map to the same location

• Common solution: chaining – at each 
location (bucket) in the table, keep 
linked list of all elements that hash there.

51

1 2 3 4 5 𝑚…

𝑥"

𝑥#

𝑥$

𝒉 𝑥" = 𝒉 𝑥#



Good hash functions to keep collisions low

• The hash function 𝒉 is good iff it
– distributes elements uniformly across the 𝑚 array locations so that 
– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332

52



Hashing: summary

53

Hash Tables

• They store the data itself
• With a good hash function, the data 

is well distributed in the table and 
lookup times are small.

• However, they need at least as much 
space as all the data being stored, 
i.e., 𝑚 = Ω( 𝑆 )

Can we do 
better!?

In some cases, 𝑆 is huge, 
or not known a-priori … 



Next time: Bloom Filters

• Probabilistic data structure.
• Close cousins of hash tables.
– But: Ridiculously space efficient

• Occasional errors, specifically false positives.
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