CSE 312 Foundations of Computing II

Lecture 10: Variance and Independence of RVs

Anonymous questions: www.slido.com

Agenda

- Recap + LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathbb{RV} X: \Omega \to \mathbb{R}$, the **expectation** or **expected** value or mean of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

or equivalently $\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot P(X = x) = \sum_{x \in \Omega_X} x \cdot p_X(x)$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Linearity of Expectation – Even stronger

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n, b \in \mathbb{R}$, $\mathbb{E}[a_1X_1 + \cdots + a_nX_n + b] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n] + b.$

Very important: In general, we do <u>not</u> have $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$

E.g., $X = \begin{cases} +1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$

Then: $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

How DO we compute $\mathbb{E}[g(X)]$?

Also known as **LOTUS**: "Law of the unconscious statistician

(nothing special going on in the discrete case)

• Let *X* be the number of students who get their own HW

Agenda

- LOTUS
- Variance 🗨
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$W_{1} = \text{payoff in a round of Game 1}$$

$$P(W_{1} = 2) = \frac{1}{3}, P(W_{1} = -1) = \frac{2}{3}$$

$$E(W_{1}) = 2 \cdot \frac{1}{3} + (-1) \cdot \frac{2}{3} = 0$$

Which game would you rather play?

Game 1: In every round, you win \$2 with probability 1/3, lose \$1 with probability 2/3.

$$W_1 = \text{payoff in a round of Game 1}$$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$
 $\mathbb{E}[W_1] = 0$

Game 2: In every round, you win \$10 with probability 1/3, lose \$5 with probability 2/3.

$$W_{2} = \text{payoff in a round of Game 2}$$

$$P(W_{2} = 10) = \frac{1}{3}, P(W_{2} = -5) = \frac{2}{3}$$

$$E(W_{2}) = 10 \cdot \frac{1}{3} - 5 \cdot \frac{2}{3} = 0$$

Same expectation, but clearly a very different distribution. We want to capture the difference – New concept: Variance

Variance (Intuition, First Try)

$$P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = 2) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = -1) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}$

 $P(W_1 = -1) = \frac{1}{3}, P(W_1 = -1) = \frac{2}{3}, P(W_1 = -1) = \frac{$

New quantity (random variable): How far from the expectation?

$$W_{1} - \mathbb{E}[W_{1}] \qquad \qquad \mathbb{E}\left(\mathcal{W}_{1} - \mathbb{E}(\mathcal{W}_{1})\right)$$

$$= \mathbb{E}\left(\mathcal{W}_{1}\right) - \mathbb{E}\left(\mathbb{E}[\mathcal{W}_{1}]\right)$$

$$= \mathbb{E}\left(\mathcal{W}_{1}\right) - \mathbb{E}\left(\mathcal{W}_{1}\right) = 0$$

New quantity (random variable): How far from the expectation?

 $W_{1} - \mathbb{E}[W_{1}]$ $\mathbb{E}[W_{1} - \mathbb{E}[W_{1}]]$ $= \mathbb{E}[W_{1}] - \mathbb{E}[\mathbb{E}[W_{1}]]$ $= \mathbb{E}[W_{1}] - \mathbb{E}[W_{1}]$ = 0

A better quantity (random variable): How far from the expectation?

$$\mathbb{E}[(W_2 - \mathbb{E}[W_2])^2]$$
$$\mathbb{E}(\mathcal{O}_{\mathcal{O}}^3) = \frac{2}{3} \cdot 25 + \frac{1}{3} \cdot 100$$
$$= 50$$

We say that W_2 has "higher variance" than W_1 .

$$Var(W) = (W - \mathbb{E}[W])^2$$

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance – Example 1

$$\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot P(X = x)$$
$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$X \text{ fair die}$$
• $P(X = 1) = \dots = P(X = 6) = 1/6$
• $\mathbb{E}[X] = 3.5$

$$Var(X) = \sum_{x=1}^{6} \frac{P(X = x) \cdot (x - \mathbb{E}[X])^2}{(1 - 3.5)^2 + \frac{1}{6}(2 - 3.5)^2 + \dots + \frac{1}{6}(6 - 3.5)^2}$$

Variance – Example 1

X fair die

- $P(X = 1) = \dots = P(X = 6) = 1/6$
- $\mathbb{E}[X] = 3.5$

 $Var(X) = \sum_{x} P(X = x) \cdot (x - \mathbb{E}[X])^{2}$ = $\frac{1}{6} [(1 - 3.5)^{2} + (2 - 3.5)^{2} + (3 - 3.5)^{2} + (4 - 3.5)^{2} + (5 - 3.5)^{2} + (6 - 3.5)^{2}]$ = $\frac{2}{6} [2.5^{2} + 1.5^{2} + 0.5^{2}] = \frac{2}{6} [\frac{25}{4} + \frac{9}{4} + \frac{1}{4}] = \frac{35}{12} \approx 2.91677 \dots$

Vor(X) = 62(X) Std des 6

Variance in Pictures

Captures how much "spread' there is in a pmf

All pmfs have same expectation

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance – Properties

 $= E(x^{2}) - aE(x)^{2} + E(x)^{2}$

Variance

Theorem. $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Proof: $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ $= \mathbb{E}[X^2 - 2\mathbb{E}[X] \cdot X + \mathbb{E}[X]^2]$ $= \mathbb{E}(X^2) - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2$ (linearity of expectation!) $\mathbb{E}[X^2] \text{ and } \mathbb{E}[X]^2$ are different !

Variance – Example 1

X fair die • $\mathbb{P}(X = 1) = \dots = \mathbb{P}(X = 6) = 1/6$ • $\mathbb{E}[X] = \frac{21}{6}$ • $\mathbb{E}[X^2] = \frac{91}{6} = -1^3 \cdot \frac{1}{6} + 2^3 \cdot \frac{1}{6} + \dots + 6^3 \cdot \frac{1}{6}$ Var(X) = $\mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{105}{36} \approx 2.91677$

Theorem. For any $a, b \in \mathbb{R}$, $Var(a \cdot X + b) = a^2 \cdot Var(X)$

Vor(aX) = a Vor(X)

Variance of Indicator Random Variables

Suppose that X_A is an indicator RV for event A with P(A) = p so $\mathbb{E}[X_A] = P(A) = p$

Since X_A only takes on values 0 and 1, we always have $X_A^2 = X_A$ so

 $Var(X_A) = \mathbb{E}[X_A^2] - \mathbb{E}[X_A]^2 = \mathbb{E}[X_A] - \mathbb{E}[X_A]^2 = p - p^2 = p(1 - p)$

$$\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot P(X = x)$$

 $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} p_X(x) \cdot (x - \mathbb{E}[X])^2$

$$Vo(X) = E(X) - E(X)$$

 $Von(X) = E(X^{a}) = 1^{a} \cdot \frac{1}{2} + (-1)^{a} \cdot \frac{1}{2} = 1$

E(Y)=0 Vo-(Y)=1

In General, $Var(X + Y) \neq Var(X) + Var(Y)$

Proof by counter-example:

• Let X be a r.v. with pmf P(X = 1) = P(X = -1) = 1/2 $E(X) = 1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} = 0$

– What is $\mathbb{E}[X]$ and Var(X)?

• Let Y = -X- What is $\mathbb{E}[Y]$ and Var(Y)?

Va-(X)+Va(Y)= 2 What is Var(X + Y)?

Va(X+(-X)) = Va(0) = 0

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

 $\mathcal{N}_{\chi} = \frac{1}{3} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1$

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables *X*, *Y* are **(mutually) independent** if for all x, y, $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$

Intuition: Knowing X doesn't help you guess Y and vice versa $P(A \cap B) = P(A) P(B)$

Definition. The random variables $X_1, ..., X_n$ are **(mutually) independent** if for all $x_1, ..., x_n$, $P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

$$n=5$$

 $\Lambda_{X}=20,123,4,53$
 $\Lambda_{Y}=20,1$

Let *X* be the number of heads in *n* independent coin flips of the same coin. Let $Y = X \mod 2$ be the parity (even/odd) of *X*. Are *X* and *Y* independent?

$$x \in A_{X}, y \in A_{Y}$$

$$P(X = x, Y = y) \neq P(X = x)P(Y = y) \leftarrow P(X = a, Y = 1) = 0$$

$$P(X = a, Y = 1) = 0$$

$$P(X = a) \neq 0$$

$$P(X = a) \neq 0$$

Example

Make 2n independent coin flips of the same coin.

Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.

Are *X* and *Y* independent?

$$P(X=i, Y=j) = P(X=i) P(Y=j)$$

$$P(X=i) = (i) p^{i}(i-p)^{n-i}$$

$$p^{i}(i-p)^{n-i}$$
Here H T T

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Corollary. If $X_1, X_2, ..., X_n$ mutually independent, $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_i^n \operatorname{Var}(X_i)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If *X*, *Y* independent, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

Let
$$x_i, y_i, i = 1, 2, ...$$
 be the possible values of X, Y .

$$\mathbb{E}[X \cdot Y] = \sum_i \sum_j x_i \cdot y_j \cdot P(X = x_i \land Y = y_j)$$
independence
$$= \sum_i \sum_j x_i \cdot y_i \cdot P(X = x_i) \cdot P(Y = y_j)$$

$$= \sum_i x_i \cdot P(X = x_i) \cdot \left(\sum_j y_j \cdot P(Y = y_j)\right)$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y]$$
Note: NOT true in general; see earlier example $\mathbb{E}[X^2] \neq \mathbb{E}[X]^2$

39

(Not Covered) Proof of Var(X + Y) = Var(X) + Var(Y)

Theorem. If *X*, *Y* independent, Var(X + Y) = Var(X) + Var(Y)

Proof

$$Var(X + Y) = \mathbb{E}[(X + Y)^{2}] - (\mathbb{E}[X + Y])^{2}$$

$$= \mathbb{E}[X^{2} + 2XY + Y^{2}] - (\mathbb{E}[X] + \mathbb{E}[Y])^{2}$$

$$= \mathbb{E}[X^{2}] + 2 \mathbb{E}[XY] + \mathbb{E}[Y^{2}] - (\mathbb{E}[X]^{2} + 2 \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Y]^{2})$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2} + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y) + 2 \mathbb{E}[XY] - 2 \mathbb{E}[X] \mathbb{E}[Y]$$

$$= Var(X) + Var(Y)$$

equal by independence

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

Example – Coin Tosses

We flip n independent coins, each one heads with probability p

-
$$X_i = \begin{cases} 1, \ i^{\text{th}} \text{ outcome is heads} \\ 0, \ i^{\text{th}} \text{ outcome is tails.} \end{cases}$$

- $Z = \text{number of heads}$
What is $\mathbb{E}[Z]$? What is $\text{Var}(Z)$?
P($Z = k$) = $\binom{n}{k}p^k(1-p)^{n-k}$
Note: X_1, \dots, X_n are mutually independent! [Verify it formally!]
Var(Z) = $\sum_{i=1}^{n} \text{Var}(X_i) = n \cdot p(1-p)$
Note $\text{Var}(X_i) = p(1-p)$

The **variance** of a (discrete) RV *X* is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_x p_X(x) \cdot (x - \mathbb{E}[X])^2$

- Can the variance of a random variable be negative?
- Is Var(X + 5) = Var(X) + 5?
- Is it true that if Var(X) = 0, then X is a constant?
- What is the relationship between $E(X^2)$ and $[E(X)]^2$?

Independence of random variables

- Suppose X and Y are independent indicator random variables taking the value 1 with probability ½, and let Z = XY
 - Are X and Z independent?
 - Are Y and Z independent?
- Is it true that if X and Y are independent, and Y and Z are independent, then X and Z are independent?

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

Example. U = set of 128 bit strings $|U| \approx 2^{128}$ S = subset of strings of interest $|S| \approx 1000$

Two goals:

- **1.** Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
- 2. Minimal storage requirements.

Membership test: To check. $x \in S$ just check whether A[x] = 1. \rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small *S*.

Naïve Solution II – Small Storage

Idea: Represent *S* as a list with *S* entries.

$$S = \{0, 2, \dots, K\}$$

Storage: Grows with *S* only

Membership test: Check $x \in S$ requires time linear in |S|

(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *m* elements (size of array)

Hash Table

Idea: Map elements in *S* into an array *A* of size *m* using a hash function **h**

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Hashing: collisions

Collisions occur when h(x) = h(y) for some distinct $x, y \in S$, i.e., two elements of set map to the same location

 Common solution: <u>chaining</u> – at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function **h** is good iff it
 - distributes elements uniformly across the *m* array locations so that
 - pairs of elements are mapped independently

"Universal Hash Functions" – see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
 i.e., m = Ω(|S|)

In some cases, |S| is huge, or not known a-priori ...

Can we do better!?

Next time: Bloom Filters

- <u>Probabilistic</u> data structure.
- Close cousins of hash tables.
 - But: <u>Ridiculously</u> space efficient
- <u>Occasional</u> errors, specifically false positives.

