CSE 312

Foundations of Computing II
Lecture 10: Variance and Independence of RVs

Anonymous questions: www.slido.com/zunan

$$
2671111
$$

Agenda

- Recap + LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Review Expected Value of a Random Variable

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of X is

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[X]=\sum_{x \in \Omega_{X}} x \cdot P(X=x)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n}, b \in \mathbb{R}$,

$$
\mathbb{E}\left[a_{1} X_{1}+\cdots+a_{n} X_{n}+b\right]=a_{1} \mathbb{E}\left[X_{1}\right]+\cdots+a_{n} \mathbb{E}\left[X_{n}\right]+b .
$$

Very important: In general, we do not have $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Linearity is special!

In general $\mathbb{E}[g(X)] \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{l}+1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

Then: $\mathbb{E}\left[X^{2}\right] \neq \mathbb{E}[X]^{2}$

How DO we compute $\mathbb{E}[g(X)]$?

Expected Value of $g(X)$

Definition. Given a discrete RV $X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value or mean of $g(X)$ is

$$
\mathbb{E}[g(X)]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot P(\omega)
$$

or equivalently

$$
\mathbb{E}[g(X)]=\sum_{x \in X(\Omega)} g(x) \cdot P(X=x)=\sum_{x \in \Omega_{X}} g(x) \cdot p_{X}(x)
$$

Also known as LOTUS: "Law of the unconscious statistician
(nothing special going on in the discrete case)

$$
\begin{aligned}
& y=4 x^{2}-1 \\
& g(x)=4 x^{2}-1 \\
& \text { Example: Returning Homework }
\end{aligned}
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\boldsymbol{\omega})$	$\boldsymbol{\omega}$	$\boldsymbol{X}(\boldsymbol{\omega})$	
$1 / 6$	$1,2,3$	3	
$1 / 6$	$1,3,2$	1	
$1 / 6$	$2,1,3$	1	
$1 / 6$	$2,3,1$	0	
$1 / 6$	$3,1,2$	0	
$1 / 6$	$3,2,1$	1	

$$
\left.\begin{array}{l}
\mathbb{E}[X]=3 \cdot P(X=3)+1 \cdot P(X=1)+0 \cdot P(X=0) \\
P_{X}(x)
\end{array}=\left\{\begin{array}{ll}
\frac{1}{3} & x=0 \\
\frac{1}{2} & x=1 \\
\frac{1}{6} & x=3 \\
0 & \text { otherwise }
\end{array}\right] \begin{array}{l}
E(Y)=g(3) P(X=3)+g(1) P(X=1)+g(0) P(x=0) \\
7
\end{array}\right)
$$

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Which game would you rather play?

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability 2/3.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3} \\
& E\left(W_{\gamma}\right)=2 \cdot \frac{1}{3}+(-1) \cdot \frac{2}{3}=0
\end{aligned}
$$

Which game would you rather play?

Game 1: In every round, you win $\$ 2$ with probability $1 / 3$, lose $\$ 1$ with probability 2/3.

$$
\begin{aligned}
& W_{1}=\text { payoff in a round of Game } 1 \\
& P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}
\end{aligned}
$$

$$
\mathbb{E}\left[W_{1}\right]=0
$$

Game 2: In every round, you win $\$ 10$ with probability $1 / 3$, lose $\$ 5$ with probability $2 / 3$.

$$
W_{2}=\text { payoff in a round of Game } 2
$$

$$
\begin{aligned}
P\left(W_{2}=10\right) & =\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3} \\
E\left(W_{\sigma}\right) & =10 \cdot \frac{1}{3}-5 \cdot \frac{2}{3}=0
\end{aligned}
$$

Two Games

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$
Somehow, Game 2 has higher volatility / exposure!
$P\left(W_{2}=10\right)=\frac{1}{3}, P\left(W_{2}=-5\right)=\frac{2}{3}$
$2 / 3$

Same expectation, but clearly a very different distribution.
We want to capture the difference - New concept: Variance

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
\begin{aligned}
w_{1}-\mathbb{E}\left[w_{1}\right] & E\left(\omega_{1}-E\left(\omega_{1}\right)\right) \\
= & E\left(\omega_{1}\right)-E\left(E\left(\omega_{1}\right)\right) \\
= & E\left(\omega_{1}\right)-E\left(\omega_{1}\right)=0
\end{aligned}
$$

Variance (Intuition, First Try)

New quantity (random variable): How far from the expectation?

$$
W_{1}-\mathbb{E}\left[W_{1}\right]
$$

$$
\begin{aligned}
\mathbb{E}\left[W_{1}\right. & \left.-\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[\mathbb{E}\left[W_{1}\right]\right] \\
& =\mathbb{E}\left[W_{1}\right]-\mathbb{E}\left[W_{1}\right] \\
& =0
\end{aligned}
$$

Variance (Intuition, Better Try)
$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$ (2/3

$\mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x)$
$g(x)=x^{2}$
$1 / 3$
1

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& =E\left(W_{1}^{2}\right) \\
& =2^{2} \cdot \frac{1}{3}+(-1)^{2} \cdot \frac{2}{3} \\
& =2
\end{aligned}
$$

Variance (Intuition, Better Try)

$P\left(W_{1}=2\right)=\frac{1}{3}, P\left(W_{1}=-1\right)=\frac{2}{3}$
A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \mathbb{E}\left[\left(W_{1}-\mathbb{E}\left[W_{1}\right]\right)^{2}\right] \\
& \quad=\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4 \\
& \quad=2
\end{aligned}
$$

Variance (Intuition, Better Try)

A better quantity (random variable): How far from the expectation?

$$
\begin{aligned}
& \mathbb{E}\left[\left(W_{2}-\mathbb{E}\left[N_{2}\right]\right)^{2}\right] \\
& \mathbb{E}\left(\omega_{\partial}^{2}\right)= \\
& =\frac{2}{3} \cdot 25+\frac{1}{3} \cdot 100 \\
& =50
\end{aligned}
$$

We say that W_{2} has "higher variance" than W_{1}.
$\operatorname{Var}(\mathrm{W})=(W-\mathbb{E}[W])^{2}$

Variance

$$
y=g(x) \quad g(x)=(x-E(x))^{2}
$$

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Standard deviation: $\sigma(X)=\sqrt{\operatorname{Var}(X)}$

$$
\begin{aligned}
& \text { Recall } \mathbb{E}[X] \text { is a } \\
& \text { constant, not a random } \\
& \text { variable itself. }
\end{aligned}
$$

Intuition: Variance (or standard deviation) is a quantity that measures, in expectation, how "far" the random variable is from its expectation.

Variance - Example 1

$$
\begin{aligned}
& \mathbb{E}[g(X)]=\sum_{x \in \Omega_{X}} g(x) \cdot P(X=x) \\
& \operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
\end{aligned}
$$

X fair die

$$
\begin{aligned}
& \text { - } P(X=1)=\cdots=P(X=6)=1 / 6 \\
& \frac{\mathbb{E}[X]=3.5}{6} \\
& \operatorname{Var}(X)=\sum_{x=1}^{6} \frac{P(X=x)}{} \cdot(x-\mathbb{E}[X])^{2} \\
& \quad \frac{1}{6}(1-3.5)^{2}+\frac{1}{6}(2-3.5)^{2}+\cdots+\frac{1}{6} \cdot(6-3.5)^{2}
\end{aligned}
$$

Variance - Example 1

X fair die

- $P(X=1)=\cdots=P(X=6)=1 / 6$
- $\mathbb{E}[X]=3.5$
$\operatorname{Var}(\mathrm{X})=\sum_{x} P(X=x) \cdot(x-\mathbb{E}[X])^{2}$
$=\frac{1}{6}\left[(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right]$
$=\frac{2}{6}\left[2.5^{2}+1.5^{2}+0.5^{2}\right]=\frac{2}{6}\left[\frac{25}{4}+\frac{9}{4}+\frac{1}{4}\right]=\frac{35}{12} \approx 2.91677 \ldots$

$$
\operatorname{Van}(x)=\sigma^{2}(x)
$$

Variance in Pictures

 Steder σCaptures how much "spread' there is in a pmf

All pmfs have same expectation

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

$$
\begin{aligned}
& \operatorname{Van}(x)=E\left[(\hat{X}-E(x))^{2}\right] \\
&=E\left[x^{2}-2 x E(x)+(E(x))^{2}\right] \\
& \operatorname{LOE}=E\left(x^{2}\right)+E(-2 E(x) x)+E\left(E(x)^{2}\right) \\
& E(a x)(x)=E\left(x^{2}\right)-2 E(x) E(x)+E(x)^{2} \\
&=a E(x)
\end{aligned}
$$

$=E\left(x^{2}\right)-2 E(x)^{2}+E(x)^{2}$

Variance

Proof: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] \cdot X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \quad \text { (linearity of } \\
&
\end{aligned}
$$

Variance - Example 1

X fair die

- $\mathbb{P}(X=1)=\cdots=\mathbb{P}(X=6)=1 / 6$
- $\mathbb{E}[X]=\frac{21}{6}$
$\cdot \mathbb{E}\left[X^{2}\right]=\frac{91}{6}=t^{2} \cdot \frac{1}{6}+2^{2} \frac{1}{6}+\cdots+6^{2} \frac{1}{6}$
$\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36} \approx 2.91677$

Variance - Properties

$$
\begin{array}{ll}
z=a x & y=x+b \\
E(2)=a E(x) & \frac{y}{E(y)=E(x)+b}
\end{array}
$$

Definition. The variance of a (discrete) RV X is

$$
\begin{aligned}
& \operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2} \\
& (a(X-\mathbb{E}(X))]^{2} \\
& \text { n. } \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& \operatorname{Van}(X+b)=\operatorname{Var}(X)
\end{aligned}
$$

Theorem. $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

$$
\operatorname{Var}(a x)=a^{2} \underline{\operatorname{Van}(X)}
$$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so $\mathbb{E}\left[X_{A}\right]=P(A)=p$

$$
\begin{gathered}
\mathbb{E}\left(X_{A}^{2}\right)=p \\
\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\frac{\mathbb{E}\left[X_{A}\right]^{2}}{p^{2}}=p-p^{2}=p(1-p)
\end{gathered}
$$

Variance of Indicator Random Variables

Suppose that X_{A} is an indicator RV for event A with $P(A)=p$ so

$$
\mathbb{E}\left[X_{A}\right]=P(A)=p
$$

Since X_{A} only takes on values 0 and 1 , we always have $X_{A}^{2}=X_{A}$ so

$$
\operatorname{Var}\left(X_{A}\right)=\mathbb{E}\left[X_{A}^{2}\right]-\mathbb{E}\left[X_{A}\right]^{2}=\mathbb{E}\left[X_{A}\right]-\mathbb{E}\left[X_{A}\right]^{2}=p-p^{2}=p(1-p)
$$

$$
\operatorname{Va}(x)=E\left(x^{2}\right)-E(x)^{2}
$$

In General, $\operatorname{Var}(X+Y) \neq \operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof by counter-example:

- Let X be a rev. with $\operatorname{pmf} P(X=1)=P(X=-1)=1 / 2$
- What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$?
- Let $Y=-X$

$$
E(x)=1 \cdot \frac{1}{2}+(-1) \cdot \frac{1}{2}=0
$$

- What is $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$?

$$
\operatorname{Vor}(x)=E\left(x^{2}\right)=1^{2} \cdot \frac{1}{2}+(-1)^{2} \cdot \frac{1}{2}=1
$$

$$
E(y)=0 \quad \operatorname{Na}(y)=1
$$

$$
\operatorname{Va}-(x)+V a(y)=2
$$

What is $\operatorname{Var}(X+Y)$?

$$
\operatorname{Va}(x+(-x))=\operatorname{Var}(0)=0
$$

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

$$
\Omega_{x}=\{-1,1\} \quad \Omega_{y}=\{1,3,5\}
$$

Random Variables and Independence

Comma is shorthand for AND

Definition. Two random variables X, Y are (mutually) independent if for all x, y,

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition: Knowing X doesn't help you guess Y and vice versa $\quad P(A \cap B)=P(A) P(B)$
Definition. The random variables X_{1}, \ldots, X_{n} are (mutually) independent if for all x_{1}, \ldots, x_{n}.

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right)
$$

Note: No need to check for all subsets, but need to check for all outcomes!

Example

$$
\begin{aligned}
& n=5 \\
& \Omega_{x}=\{0,1,2,3,4,5\} \\
& \Omega_{y}=\{0,1\}
\end{aligned}
$$

Let X be the number of heads in n independent coin flips of the same coin. Let $Y=X \bmod 2$ be the parity (even/odd) of X.
Are X and Y independent?

$$
\begin{gathered}
x \in \Omega_{x}, y \in \Omega y \\
P(X=x, Y=y) \neq P(X=x) P(Y=y) \\
P(X=2, Y=1)=0 \\
P(X=2) \neq 0 \\
P(Y=1) \neq 0
\end{gathered}
$$

Example

Make $2 n$ independent coin flips of the same coin.
Let X be the number of heads in the first n flips and Y be the number of heads in the last n flips.
Are X and Y independent?

$$
\begin{aligned}
& P(X=i, Y=j)=P(X=i)^{P(Y=j)} \\
& \frac{P(X=i)}{\pi}=\binom{n}{i} p^{i(1-p)^{n-i}}
\end{aligned}
$$

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables

Important Facts about Independent Random Variables

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

```
Proof
\[
\begin{aligned}
& \text { Let } x_{i}, y_{i}, i=1,2, \ldots \text { be the possible values of } X, Y . \\
& \begin{aligned}
\mathbb{E}[X \cdot Y] & =\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
\end{aligned}
\]
Note: NOT true in general; see earlier example \(\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}\)
```


(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { equal by independence }
\end{aligned}
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$
- $Z=$ number of heads

Fact. $Z=\sum_{i=1}^{n} X_{i}$

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p

- $X_{i}=\left\{\begin{array}{l}1, i^{\text {th }} \text { outcome is heads } \\ 0, i^{\text {th }} \text { outcome is tails. }\end{array}\right.$

$$
\text { Fact. } Z=\sum_{i=1}^{n} X_{i}
$$

- $Z=$ number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]
$\longrightarrow \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad$ Note $\operatorname{Var}\left(X_{i}\right)=p(1-p)$

Questions

The variance of a (discrete) $\mathrm{RV} X$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} p_{X}(x) \cdot(x-\mathbb{E}[X])^{2}
$$

- Can the variance of a random variable be negative?
- Is $\operatorname{Var}(X+5)=\operatorname{Var}(X)+5$?
- Is it true that if $\operatorname{Var}(X)=0$, then X is a constant?
- What is the relationship between $E\left(X^{2}\right)$ and $[E(X)]^{2}$?

Independence of random variables

- Suppose X and Y are independent indicator random variables taking the value 1 with probability $1 / 2$, and let $Z=X Y$
- Are X and Z independent?
- Are Y and Z independent?
- Is it true that if X and Y are independent, and Y and Z are independent, then X and Z are independent?

Agenda

- LOTUS
- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters! -

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings $\quad|U| \approx 2^{128}$
$S=$ subset of strings of interest

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Naïve Solution I - Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$
\mathrm{A}[x]= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}
$$

$S=\{0,2, \ldots, K\}$

0	1	2	...	K	...		
1	0	1	0	1	...	0	0

Membership test: To check. $x \in S$ just check whether $\mathrm{A}[x]=1$.
\rightarrow constant time!

Storage: Require storing 2^{128} bits, even for small S.

Naïve Solution II - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function \mathbf{h}
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Hash Table

Idea: Map elements in S into an array A of size m using a hash function \mathbf{h} Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$

Storage: m elements (size of array)

$$
\begin{aligned}
& \text { Challenge 1: Ensure } \\
& \boldsymbol{h}(x) \neq \boldsymbol{h}(y) \text { for } \\
& \text { most } x, y \in S
\end{aligned}
$$

Hashing: collisions

Collisions occur when $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ for some distinct $x, y \in S$,
i.e., two elements of set map to the same location

- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.

Good hash functions to keep collisions low

- The hash function \boldsymbol{h} is good iff it
- distributes elements uniformly across the m array locations so that
- pairs of elements are mapped independently
"Universal Hash Functions" - see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored,
i.e., $m=\Omega(|S|)$

Next time: Bloom Filters

- Probabilistic data structure.
- Close cousins of hash tables.
- But: Ridiculously space efficient
- Occasional errors, specifically false positives.

