
CSE 312: Foundations of Computing II Winter 2023

Section 9 – Solutions

Review

Law of total probability and law of total expectation

1) Law of Total Probability (partition based on value of a r.v.): If X is a discrete random variable, then

PpAq “
ÿ

xPΩX

PpA|X “ xqpXpxq

If X is a continuous random variable, then

PpAq “

ż 8

´8

PpA|X “ xqfXpxq dx

2) Conditional Expectation: Let X and Y be random variables. Then, the conditional expectation of X given
Y “ y is

ErX|Y “ ys “
ÿ

xPΩX

x ¨ P pX “ x|Y “ yq X discrete

and for any event A,
ErX|As “

ÿ

xPΩX

x ¨ P pX “ x|Aq X discrete

Note that linearity of expectation still applies to conditional expectation: ErX ` Y |As “ ErX|As ` ErY |As

3) Law of Total Expectation (Event Version): Let X be a random variable, and let events A1, ..., An partition
the sample space. Then,

ErXs “

n
ÿ

i“1

ErX|AisP pAiq

4) Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

ErXs “
ÿ

y

ErX|Y “ yspY pyq Y discrete r.v..

ErXs “

ż 8

´8

ErX|Y “ ysfY pyqdy Y continuous r.v.

Maximum Likelihood Estimation

1) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

2) Likelihood: Let x1, . . . xn be iid realizations from probability mass function pXpx ; θq (if X discrete) or density
fXpx ; θq (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood
function to be the probability of seeing the data.

If X is discrete:

L px1, . . . , xn | θq “

n
ź

i“1

pX pxi | θq

If X is continuous:

L px1, . . . , xn | θq “

n
ź

i“1

fX pxi | θq
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3) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE “ argmax
θ

L px1, . . . , xn | θq “ argmax
θ

lnL px1, . . . , xn | θq

4) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same
as the value that maximizes the log-likelihood.

If X is discrete:

lnL px1, . . . , xn | θq “

n
ÿ

i“1

ln pX pxi | θq

If X is continuous:

lnL px1, . . . , xn | θq “

n
ÿ

i“1

ln fX pxi | θq

5) Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

(c) Take the second derivative and show that θ̂ indeed is a maximizer, that B
2L

Bθ2 ă 0 at θ̂. Also ensure that
it is the global maximizer: check points of non-differentiability and boundary values.

(d) If we are finding the MLE for a set of parameters, then we set up the system of equations obtained by
taking the partial derivative of the log-likelihood function with respect to each of the parameters and
setting it equal to 0. We then solve this system to get the MLEs. (And again, second order conditions
need to be checked.)

6) An estimator θ̂ for a parameter θ of a probability distribution is unbiased iff Erθ̂pX1, . . . , Xnqs “ θ

Task 1 – Trapped Miner

A miner is trapped in a mine containing 3 doors.

- D1: The 1st door leads to a tunnel that will take him to safety after 3 hours.

- D2: The 2nd door leads to a tunnel that returns him to the mine after 5 hours.

- D3: The 3rd door leads to a tunnel that returns him to the mine after a number of hours that is Binomial
with parameters p12, 1

3 q.

At all times, he is equally likely to choose any one of the doors. What is the expected number of hours for this
miner to reach safety? Use the law of total expectation.

Let T = number of hours for the miner to reach safety. (T is a random variable)
Let Di be the event the ith door is chosen. i P t1, 2, 3u. Finally, let T3 be the time it takes to return
to the mine in the third case only (a random variable). Note that the expectation of T3 is 12 ¨ 1

3
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because it is binomially distributed with parameters n “ 12, p “ 1
3 . By Law of Total Expectation,

linearity of expectation, and by applying the conditional expectations given by the problem statement:

ErT s “ ErT | D1s ¨ P pD1q ` ErT | D2s ¨ P pD2q ` ErT | D3s ¨ P pD3q

“ 3 ¨
1

3
` p5 ` ErT sq ¨

1

3
` pErT3 ` T sq ¨

1

3

“ 3 ¨
1

3
` p5 ` ErT sq ¨

1

3
` pErT3s ` ErT sq ¨

1

3

“ 3 ¨
1

3
` p5 ` ErT sq ¨

1

3
` p4 ` ErT sq ¨

1

3

Solving this equation for ErT s, we get

ErT s “ 12

Therefore, the expected number of hours for this miner to reach safety is 12.

Task 2 – Lemonade Stand

Suppose I run a lemonade stand, which costs me $100 a day to operate. I sell a drink of lemonade for $20. Every
person who walks by my stand either buys a drink or doesn’t (no one buys more than one). If it is raining, n1

people walk by my stand, and each buys a drink independently with probability p1. If it isn’t raining, n2 people
walk by my stand, and each buys a drink independently with probability p2. It rains each day with probability p3,
independently of every other day. Let X be my profit over the next week. In terms of n1, n2, p1, p2 and p3, what
is ErXs? Use the law of total expectation.

Let R be the event it rains. Let Xi be how many drinks I sell on day i for i “ 1, ..., 7. We are
interested in X “

ř7
i“1 p20Xi ´ 100q. We have Xi|R „ Binomialpn1, p1q, so ErXi|Rs “ n1p1.

Similarly, Xi|R
C „ Binomialpn2, p2q, so ErXi|R

Cs “ n2p2. By the law of total expectation,

µ “ ErXis “ ErXi|RsP pRq ` ErXi|R
CsP

`

RC
˘

“ n1p1p3 ` n2p2p1 ´ p3q

Hence, by linearity of expectation,

ErXs “ Er

7
ÿ

i“1

p20Xi ´ 100qs “ 20
7

ÿ

i“1

ErXis ´ 700 “ 140µ ´ 700

“ 140 ¨ pn1p1p3 ` n2p2p1 ´ p3qq ´ 700.

Task 3 – Mystery Dish!

A fancy new restaurant has opened up that features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5 ´ 3θ. Each
diner is served a dish independently. Let xA be the number of people who received dish A, xB the number of
people who received dish B, etc, where xA ` xB ` xC ` xD “ n. Find the MLE θ̂ for θ.

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter θ. Because each diner is assigned a dish
independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

Lpx | θq “ 0.5xAθxB p2θqxC p0.5 ´ 3θqxD
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From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for θ̂.

lnLpx | θq “ xA lnp0.5q ` xB lnpθq ` xC lnp2θq ` xD lnp0.5 ´ 3θq

d

dθ
lnLpx | θq “

xB

θ
`

xC

θ
´

3xD

0.5 ´ 3θ

xB

θ̂
`

xC

θ̂
´

3xD

0.5 ´ 3θ̂
“ 0

Solving yields θ̂ “ xB`xC

6pxB`xC`xDq
.

Task 4 – A Red Poisson

Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. In other
words, they follow the distributions Ppk; θq “ θke´θ{k!, where k P N and θ ą 0 is a positive real number.

Find the MLE of θ.

We follow the recipe given in class:

L px1, . . . , xn | θq “

n
ź

i“1

e´θ θ
xi

xi!

lnL px1, . . . , xn | θq “

n
ÿ

i“1

r´θ ´ lnpxi!q ` xi lnpθqs

d

dθ
lnL px1, . . . , xn | θq “

n
ÿ

i“1

”

´1 `
xi

θ

ı

´n `
Σn

i“1xi

θ̂
“ 0

θ̂ “
Σn

i“1xi

n

Task 5 – A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 “

˜

1

n

n
ÿ

i“1

pxi ´ θ̂1q2q

¸

where θ̂1 “ 1
n

řn
i“1 xi is the MLE of the mean. Is θ̂2 unbiased?

Let X “ 1
n

řn
i“1 Xi. Then

E
”

θ̂2

ı

“ E

«

1

n

n
ÿ

i“1

pXi ´ Xq2

ff

“ E

«

1

n

n
ÿ

i“1

pX2
i ´ 2XiX ` X

2
q

ff
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which by linearity of expectation (and distributing the sum) is

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E

«

2

n
X

n
ÿ

i“1

Xi

ff

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ 2E
”

X
2
ı

` E
”

X
2
ı

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

. p˚˚q

We know that for any random variable Y , since Var pY q “ E
“

Y 2
‰

´ pE rY sq2 it holds that

E
“

Y 2
‰

“ Var pY q ` pE rY sq2.

Also, we have E rXis “ µ, Var pXiq “ σ2 @i and E
“

X
‰

“ µ, Var
`

X
˘

“ σ2

n . Combining these facts,
we get

E
“

X2
i

‰

“ σ2 ` µ2 @i and E
”

X
2
ı

“
σ2

n
` µ2.

Substituting these equations into (**) we get

E

«

1

n

n
ÿ

i“1

pXi ´ Xq2q

ff

“
1

n

n
ÿ

i“1

E
“

X2
i

‰

´ E
”

X
2
ı

“ σ2 ` µ2 ´

ˆ

σ2

n
` µ2

˙

“

ˆ

1 ´
1

n

˙

σ2.

Thus θ̂2 is not unbiased.

Task 6 – Weather Forecast

A weather forecaster predicts sun with probability θ1, clouds with probability θ2 ´ θ1, rain with probability 1
2 and

snow with probability 1
2 ´ θ2. This year, there have been 55 sunny days, 100 cloudy days, 160 rainy days and 50

snowy days. What is the maximum likelihood estimator for θ1 and θ2?

We want to find the likelihood of the data samples given the parameter θ. To do this, we take the
following product over all the data points.

Lpx1, ..., x365 | θ1, θ2q “ θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

Then, we use this to determine the log likelihood.

lnLpx1, ..., x365 | θ1, θ2q “ ln θ551 pθ2 ´ θ1q100
ˆ

1

2

˙160 ˆ

1

2
´ θ2

˙50

“ ln θ551 ` lnpθ2 ´ θ1q100 ` ln

ˆ

1

2

˙160

` ln

ˆ

1

2
´ θ2

˙50

“ 55 ln θ1 ` 100 lnpθ2 ´ θ1q ` 160 ln

ˆ

1

2

˙

` 50 ln

ˆ

1

2
´ θ2

˙
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Then, we take the derivative of the log likelihood with respect to θ1.

B

Bθ1
lnLpx1, ..., x365 | θ1, θ2q “

55

θ1
´

100

θ2 ´ θ1

Setting this equal to 0, we solve for θ̂1:

55

θ̂1
´

100

θ̂2 ´ θ̂1
“ 0

55pθ̂2 ´ θ̂1q ´ 100 θ̂1 “ 0

55 θ̂2 “ 155 θ̂1

θ̂1 “
11

31
θ̂2

Then, we take the derivative of the log likelihood with respect to θ2.

B

Bθ2
lnLpx1, ..., x365 | θ1, θ2q “

100

θ2 ´ θ1
´

50
1
2 ´ θ2

Setting this equal to 0, we solve for θ̂2:

100

θ̂2 ´ θ̂1
´

50
1
2 ´ θ̂2

“ 0

100

ˆ

1

2
´ θ̂2

˙

´ 50 pθ̂2 ´ θ̂1q “ 0

50 ´ 150 θ̂2 ` 50 θ̂1 “ 0

θ̂2 “
θ̂1 ` 1

3

We can now solve the simultaneous equations we have for θ1 and θ2 to obtain the maximum likelihood
estimators for each parameter.

θ̂2 “
θ̂1 ` 1

3

Plugging in the equation for θ1, we find

θ̂2 “

11
31 θ̂2 ` 1

3

3 θ̂2 “
11

31
θ̂2 ` 1

93 θ̂2 “ 11 θ̂2 ` 31

θ̂2 “
31

82

Plugging in the value for θ2 into the equation for θ1,

θ̂1 “
11

31
¨
31

82
“

11

82

To confirm that this is in fact a maximum, we could do a second derivative test. We won’t ask you
do this for this multivariate case, but it would still be good to check!
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Task 7 – Faulty Machines

You are trying to use a machine that only works on some days. If on a given day, the machine is working it will
break down the next day with probability 0 ă b ă 1, and works on the next day with probability 1´ b. If it is not
working on a given day, it will work on the next day with probability 0 ă r ă 1 and not work the next day with
probability 1 ´ r.

a) In this problem we will formulate this process as a Markov chain. First, let Xptq be a variable that denotes
the state of the machine at time t. Then, define a state space S that includes all the possible states that the
machine can be in. Lastly, for all A,B P S find PpXpt`1q “ A | Xptq “ Bq (A and B can be the same state).

Formally, a Markov chain is defined by a state space S and a transition probability matrix. The two
possible states of the machine are “working” and “broken”. So, S “ tW,Bu. Let Xt be the state
of the process at time t. Then we can define the following transition probabilities:

PpXpt`1q “ W | Xptq “ W q “ 1 ´ b PpXpt`1q “ B | Xptq “ W q “ b

PpXpt`1q “ W | Xptq “ Bq “ r PpXt`1 “ B | Xptq “ Bq “ 1 ´ r

We can also represent the transition probabilities with the following matrix:

M “

„

1 ´ b b
r 1 ´ r

ȷ

where the ij-th entry is probability that the machine is in the j-th state at time t ` 1 given it was
in state i at time t. (Here state 1 is working and state 2 is broken.)

b) Suppose that on day 1, the machine is working. What is the probability that it is working on day 3?

We are trying to find PpXp3q “ W | Xp1q “ W q. From the law of total probability, and then
plugging in the values from our transition matrix:

PpXp3q “ W | Xp1q “ W q

“
ÿ

iPS
PpXp3q “ W | Xp1q “ W,Xp2q “ iq ¨ PpXp2q “ i | Xp1q “ W q

“ PpXp3q “ W | Xp2q “ W q ¨ PpXp2q “ W | Xp1q “ W q

` PpXp3q “ W | Xp2q “ Bq ¨ PpXp2q “ B | Xp1q “ W q

“ PpXp3q “ W | Xp2q “ W q ¨ p1 ´ bq ` PpXp3q “ W | Xp2q “ Bq ¨ b

“ p1 ´ bqp1 ´ bq ` rb

“ p1 ´ bq2 ` rb

Alternative solution using matrix operations: Let qptq be the probability vector at time t associated
with this Markov chain. The assumption that the machine is working on day 1 is the same as saying
that the probability vector qp1q “ r1, 0s. Then

qp2q “ qp1q ¨ M “
“

1 0
‰

„

1 ´ b b
r 1 ´ r

ȷ

“
“

1 ´ b b
‰

.

The probability we want to compute is the 1st entry of

qp3q “ qp2q ¨ M “
“

1 ´ b b
‰

„

1 ´ b b
r 1 ´ r

ȷ

which equals p1 ´ bq ¨ p1 ´ bq ` b ¨ r “ p1 ´ bq2 ` br.
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c) As n Ñ 8, what does the probability that the machine is working on day n converge to? To get the answer,
solve for the stationary distribution.

The stationary distribution is the row vector π “ rπW πBs such that πP “ π. The entries in
the vector πW and πB can be interpreted as the probabilities that the machine works or is broken
converge to. As such, πW ` πB “ 1. Additionally, multiplying the stationary distribution by the
TPM gives us the following two equations (one per column of M):

πW “ πW p1 ´ bq ` πB r πB “ πW b ` πBp1 ´ rq

Solving these 3 equations for πW and πB gives us the following solutions for the stationary distri-
bution:

πW “
r

b ` r
πB “

b

b ` r

So, as n Ñ 8 the probability that the machine works on day n is πW “ r
b`r

Task 8 – Another Markov Chain

Suppose that the following is the transition probability matrix for a 4 state Markov chain (states 1,2,3,4).

M “

»

—

—

–

0 1{2 1{2 0
1{3 0 0 2{3
1{3 1{3 0 1{3
1{5 2{5 2{5 0

fi

ffi

ffi

fl

a) What is the probability that Xp2q “ 4 given that Xp0q “ 4?

Let’s denote the state space S “ t1, 2, 3, 4u. Using the law of total probability we can determine
that

PpXp2q “ 4 | Xp0q “ 4q “
ÿ

iPS
PpXp2q “ 4 | Xp0q “ 4, Xp1q “ iq PpXp1q “ i | Xp0q “ 4q

“
ÿ

iPS
PpXp2q “ 4 | Xp1q “ iq PpXp1q “ i | Xp0q “ 4q

“ 0 `
2

5
¨
2

3
`

2

5
¨
1

3
` 0

“
2

5

Alternative solution using matrix operations: Let qptq be the probability vector at time t associated
with this Markov chain. The statement that Xp0q “ 4 is equivalent to saying that the probability
vector qp0q “ r0, 0, 0, 1s. Therefore

qp1q “ qp0q ¨ M “
“

0 0 0 1
‰

¨

»

—

—

–

0 1{2 1{2 0
1{3 0 0 2{3
1{3 1{3 0 1{3
1{5 2{5 2{5 0

fi

ffi

ffi

fl

“
“

1{5 2{5 2{5 0
‰

.

What we want is the 4-th entry of

qp2q “ qp1q ¨ M “
“

1{5 2{5 2{5 0
‰

¨

»

—

—

–

0 1{2 1{2 0
1{3 0 0 2{3
1{3 1{3 0 1{3
1{5 2{5 2{5 0

fi

ffi

ffi

fl

This is 0 ` 2
5 ¨ 2

3 ` 2
5 ¨ 1

3 ` 0 “ 2{5.
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b) Write down the system of equations that the stationary distribution must satisfy and solve them.

The stationary distribution is the row vector π “ rπ1 π2 π3 π4s such that πP “ π. We know that
π1 ` π2 ` π3 ` π4 “ 1. Additionally, multiplying the stationary distribution by the TPM gives us
the following equations:

π1 “
1

3
π2 `

1

3
π3 `

1

5
π4

π2 “
1

2
π1 `

1

3
π3 `

2

5
π4

π3 “
1

2
π1 `

2

5
π4

π4 “
2

3
π2 `

1

3
π3

Solving these 5 equations for each πi gives us the following solutions for the stationary distribution:

π1 “
46

206
π2 “

60

206
π3 “

45

206
π4 “

55

206

Task 9 – Three Tails

You flip a fair coin until you see three tails in a row. Model this as a Markov chain with the following states:

- S: start state, which we are only in before flipping any coins.

- H: We see a heads, which means no streak of tails currently exists.

- T : We’ve seen exactly one tail in a row so far.

- TT : We’ve seen exactly two tails in a row so far.

- TTT : We’ve accomplished our goal of seeing three tails in a row, stop flipping, and stay there.

a) Write down the transition probability matrix.

M “

»

—

—

—

—

–

0 1{2 1{2 0 0
0 1{2 1{2 0 0
0 1{2 0 1{2 0
0 1{2 0 0 1{2
0 0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

b) Write down the system of equations whose variables are Dpsq for each state s P tS,H, T, TT, TTT u, where
Dpsq is the expected number of steps until state TTT is reached starting from state s. Solve this system of
equations to find DpSq.

Using the law of total expectation and the transition probability matrix above we can set up and
solve the following system of equations:

DpTTT q “ 0

DpTT q “ 1 `
1

2
DpHq `

1

2
DpTTT q “

1

2
DpHq ` 1

DpT q “ 1 `
1

2
DpHq `

1

2
DpTT q “

3

4
DpHq `

3

2

DpHq “ 1 `
1

2
DpHq `

1

2
DpT q “

7

8
DpHq `

7

4

DpSq “ 1 `
1

2
DpHq `

1

2
DpT q “

7

8
DpHq `

7

4
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Solving for DpHq gives us that DpHq “ 14, which allows as to solve for the rest of the expected
number of steps, DpTT q “ 8, DpT q “ 12, DpSq “ 14. So, we expect to flip 14 coins before we
flip three tails in a row.

c) Write down the system of equations whose variables are γpsq for each state s P tS,H, T, TT, TTT u, where
γpsq is the expected number of heads seen before state TTT is reached. Solve this system to find γpSq, the
expected number of heads seen overall until getting three tails in a row.

Like in the previous part we can use the LoTE and the Transition Probability Matrix to set up and
solve the following system of equations. We get one equation for each column of M :

γpTTT q “ 0

γpTT q “ 0.5γpHq ` 0.5γpTTT q “ 0.5γpHq

γpT q “ 0.5γpHq ` 0.5γpTT q “ 0.75γpHq

γpHq “ 1 ` 0.5γpHq ` 0.5γpT q “ 0.875γpHq ` 1

γpSq “ 0.5γpHq ` 0.5γpT q “ 0.875γpHq

Solving for γpHq gives us γpHq “ 8. This allows us to solve for the other expected values which
are γpTT q “ 4, γpT q “ 6, γpSq “ 7. So, we expect to see 7 heads before we flip three tails in a
row.

Task 10 – Use of Law of Total Probability

Suppose that the time until server 1 crashes is X „ Exp(λ) and the time until server 2 crashes is independent,
with Y „ Exp(µ).
What is the probability that server 1 crashes before server 2?

We have X „ Exp(λ) and Y „ Exp(µ), and want to find P(X ¡ Y ). Let A be the event that X
¡ Y . By the Law of Total Probability for Continuous Variables, using A as the event and Y as the
continuous random variable, we have

PpAq “

ż 8

´8

PpA|Y “ yqfY pyq dy

As Y „ Exp(µ), fY pyq = 0 for all y ă 0, so the integral is only nonzero over the range from 0 to
8, so we have

PpAq “

ż 8

0

PpA|Y “ yqfY pyq dy

As A is the event that X ă Y , we know

PpA|Y “ yq “ PpX ă Y |Y “ yq “ PpX ă y|Y “ yq “ PpX ă yq

Note the last equality above is true since X,Y are independent so P pX ă y|Y “ yq “ P pX ă yq

for any y. Also note PpX ă yq = PpX ď yq as X is continuous. So,

PpAq “

ż 8

0

PpA|Y “ yqfY pyq dy “

ż 8

0

PpX ď yqfY pyq dy

Here, as X „ Exp(λ), we can plug in the CDF of Exp(λ) to get PpX ď yq, and as Y „ Exp(µ),
we can plug in the PDF of Exp(µ) to get fY pyq as follows:

PpAq “

ż 8

0

PpX ď yqfY pyq dy “

ż 8

0

p1 ´ e´λyqfY pyq dy “

ż 8

0

p1 ´ e´λyqµe´µy dy

10



We can simply evaluate the integral to finish the problem as follows:

PpAq “

ż 8

0

p1 ´ e´λyqµe´µy dy “

ż 8

0

µe´µy dy `

ż 8

0

p´e´λyqµe´µy dy

Let’s now evaluate each of the above integrals:
ż 8

0

µe´µy dy “ r´e´µys8
0 “ 0 ´ p´1q “ 1

ż 8

0

p´e´λyqµe´µy dy “ ´µ

ż 8

0

pe´pλ`µqyq dy “
´µ

λ ` µ
r´e´pλ`µqys8

0 “
´µ

λ ` µ
p0´p´1qq “

´µ

λ ` µ

So, we can combine these results to get:

PpAq “

ż 8

0

µe´µy dy `

ż 8

0

p´e´λyqµe´µy dy “ 1 ´
µ

λ ` µ
“

λ

λ ` µ

So, as A is the event that X ă Y , our final answer is that the probability that server 1 crashes
before server 2 is λ

λ`µ .

Task 11 – Elevator rides

The number X of people who enter an elevator on the ground floor is a Poisson random variable with mean
10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of
the N floors, independently of where others get off, compute the expected number of stops the elevator will
make before discharging all the passengers.

Let S be the number of stops the elevator makes, and X „ Poip10q. We shall calculate ErSs.
By the law of total expectation, partitioning on the value of X, we have

ErSs “

8
ÿ

i“0

ErS|X “ isP pX “ iq

By the definition of Poison distribution, we know

P pX “ iq “ e´10 10
i

i!

To calculate ErS|X “ is, let S “ y1 ` y2 ` ... ` yN , where

yj “

#

1 if someone gets off at the jth floor

0 otherwise

Then, by the linearity of conditional expectation, we have

ErS|X “ is “ Ery1 ` y2 ` ... ` yN |X “ is “

N
ÿ

j“1

Eryj |X “ is “

N
ÿ

j“1

P pyj “ 1|X “ iq

To figure out P pyj “ 1|X “ iq, it would be more convenient to find its complement, P pyj “ 0|X “ iq,
which represents the probability that nobody gets off at jth floor. Since each person is equally likely
to get off at any one of N floor, we know P pyj “ 0|X “ iq “ pN´1

N qi. Thus, we have

ErS|X “ is “

N
ÿ

j“1

P pyj “ 1|X “ iq “

N
ÿ

j“1

1 ´ P pyj “ 0|X “ iq “

N
ÿ

j“1

1 ´ p
N ´ 1

N
qi
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Finally, we find

ErSs “

8
ÿ

i“0

ErS|X “ isP pX “ iq “

8
ÿ

i“0

˜

N
ÿ

j“1

1 ´ p
N ´ 1

N
qi

¸

e´10 10
i

i!
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