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Administrivia & Agenda

e Pset8isout
e The quarter is almost over, you've got this!!



Law of total probability and law of total expectation

1) Law of Total Probability (partition based on value of a r.v.): If X is a discrete random variable, then

P(A) = ) P(AIX =z)px(z)

IL'GQX

If X is a continuous random variable, then

PA) = [ PUAIX = 2)fx(@) da

—00

2) Conditional Expectation: Let X and Y be random variables. Then, the conditional expectation of X given
Y=yis
E[X[Y =y]= ) z-P(X=z[Y =y) X discrete
:L'EQX

0¢]
E[X|Y =y] = f z-P(X =z|Y =y) de X continuous

—00
and for any event A,
E[X|A] = ) z-P(X =z|A) X discrete
$€QX

Q0
E[X|A] =f z-P(X =z|A) dr X continuous

—Q0

Note that linearity of expectation still applies to conditional expectation: E[X + Y'|A] = E[X|A] + E[Y|A]



3) Law of Total Expectation (Event Version): Let X be a random variable, and let events A;, ..., A,, partition
the sample space. Then,

E[X] = ), E[X|A]P (A:)
i=1
4) Law of Total Expectation (RV Version): Suppose X and Y are random variables. Then,

E[X] =) E[X|Y =ylpy(y) Y discrete r.v..

E[X] = foo E[X|Y =y]fy(y)dy Y continuous r.v.

—00



Maximum Likelihood Estimation

1) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

2) Likelihood: Let z1, ...z, be iid realizations from probability mass function px (x ;) (if X discrete) or density
fx(x;0) (if X continuous), where 6 is a parameter (or a vector of parameters). We define the likelihood

function to be the probability of seeing the data.

If X is discrete: .
L(zy,...,z, | 0) = pr(a:i | 6)
i=1

If X is continuous:

i=1

3) Maximum Likelihood Estimator (MLE): We denote the MLE of 8 as O\vLE or simply 0. the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

Omie = argmgme(a:l,...,xn | 0) = argmgaxlnL(a:l,...,xn | 9)



4) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of 8 that maximizes the likelihood will be exactly the same
as the value that maximizes the log-likelihood.

If X is discrete: N
InL(z1,...,2, | 0) = Zlnpx (x; | 6)

1=1

If X is continuous: .
InL(@,... 8| 0)= Zlnfx (i | 0)
i=1

5) Steps to find the maximum likelihood estimator, §:

(a) Find the likelihood and log-likelihood of the data.
(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, 6.

(c) Take the second derivative and show that 0 indeed is a maximizer, that ‘3927[; <0 at §. Also ensure that
it is the global maximizer: check points of non-differentiability and boundary values.

(d) If we are finding the MLE for a set of parameters, then we set up the system of equations obtained by
taking the partial derivative of the log-likelihood function with respect to each of the parameters and
setting it equal to 0. We then solve this system to get the MLEs. (And again, second order conditions
need to be checked.)

6) An estimator  for a parameter @ of a probability distribution is unbiased iff E[d(X1,...,X,)] = 6



Markov Chains: (to be covered)

1) A discrete-time stochastic process (DTSP) is a sequence of random variables X X1 x(2) “where
X® is the value at time ¢t. For example, the temperature in Seattle or stock price of TESLA each day, or
which node you are at after each time step on a random walk on a graph.

2) A Markov Chain is a DTSP, with the additional following three properties:

(a) ...has a finite (or countably infinite) state space S = {si,...,s,} which it bounces between, so each
X®es.

(b) ...satisfies the Markov property. A DTSP satisfies the Markov property if the future is (conditionally)
independent of the past given the present. Mathematically, it means,

P (X(t“) =21 | XO =20, XD = gq, . XD =gy XO a:t) —P (X(t“) =21 | XO® = :vt> .

(c) ...has fixed transition probabilities. Meaning, if we are at some state s;, we transition to another
state s; with probability independent of the current time. Due to this property and the previous, the
transitions are governed by n? probabilities: the probability of transitioning from one of n current states
to one of n next states. These are stored in a square n x n transition probability matrix (TPM) M,
where M;; =P (X(tH) =3; | X® = s;) is the probability of transitioning from state s; to state s; for
any/every value of t.



3) A stationary distribution of a Markov chain is a probability distribution on states that is unchanged by taking
one step of the Markov chain. It is obtained by solving the matrix equation 7M = 7, where m = (7, ...,7,)
is a row vector, with 7; the stationary probability of being in state 7. Note that we must have } . m; = 1.



Question 2: Lemonade Stand

Suppose | run a lemonade stand, which costs me $100 a day to operate. | sell a drink of lemonade for $20. Every
person who walks by my stand either buys a drink or doesn't (no one buys more than one). If it is raining, n,
people walk by my stand, and each buys a drink independently with probability p;. If it isn't raining, no people
walk by my stand, and each buys a drink independently with probability ps. It rains each day with probability ps,
independently of every other day. Let X be my profit over the next week. In terms of ny,no,p1,p2 and p3, what
is E[X]? Use the law of total expectation.



Solution 2: Lemonade Stand

Let R be the event it rains. Let X; be how many drinks | sell on day i for ¢ = 1,...,7. We are
interested in X = ZZ=1 (20X; — 100). We have X;|R ~ Binomial(ny,p;), so E[X;|R] = nip;.
Similarly, X;|R¢ ~ Binomial(ng, p2), so E[X;|R®] = nypy. By the law of total expectation,

p = E[X;] = E[X,|R]P (R) + E[X;|R°]P (R®) = nip1ps + napa(1 — p3)

Hence, by linearity of expectation,

E[X] = ]E[i (20X; — 100)] = 20 27] E[X,] — 700 = 140y — 700

= 140 - (n1p1p3 + n2p2(1 — p3)) — 700.



Question 3: Mystery Dish!

A fancy new restaurant has opened up that features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability 8, dish C with probability 26, and dish D with probability 0.5 — 36. Each
diner is served a dish independently. Let x4 be the number of people who received dish A, zp the number of
people who received dish B, etc, where x4 + xp + x¢ + xp = n. Find the MLE 6 for 6.



Solution 3: Mystery Dish!

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter 6. Because each diner is assigned a dish

independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:



Solution 3: Mystery Dish!

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter 6. Because each diner is assigned a dish

independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

L(z | 0) = 0.574675 (26)%¢ (0.5 — 36)=>

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for 6.



Solution 3: Mystery Dish!

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter f. Because each diner is assigned a dish

independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

L(z | 0) = 0.574675 (26)%¢ (0.5 — 36)=>

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for 6.

InL(z | 0) = 241n(0.5) + zp In(f) + z¢ In(26) + zp In(0.5 — 36)



Solution 3: Mystery Dish!

The data tells us, for each diner in the restaurant, what their dish was. We begin by computing
the likelihood of seeing the given data given our parameter f. Because each diner is assigned a dish

independently, the likelihood is equal to the product over diners of the chance they got the particular
dish they got, which gives us:

L(z | 0) = 0.574675 (26)%¢ (0.5 — 36)=>

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it
equal to 0, and solve for 6.

InL(z | 0) = 241n(0.5) + zp In(f) + z¢ In(26) + zp In(0.5 — 36)
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Solving yields § = £tz .



Question 5: A biased estimator

In class, we showed that the maximum likelihood estimate of the variance 6, of a normal distribution (when both
the true mean y and true variance o2 are unknown) is what's called the population variance. That is

6: - (% Y @i - éo%)

where 6; = %2?:1 z; is the MLE of the mean. Is 8, unbiased?



Question 5: A biased estimator

In class, we showed that the maximum likelihood estimate of the variance 6, of a normal distribution (when both
the true mean y and true variance o2 are unknown) is what's called the population variance. That is

0, = (% Zn](wi - 51)2)>

=1

where §; = L 3" | 7, is the MLE of the mean. Is 6, unbiased?

6) An estimator  for a parameter 6 of a probability distribution is unbiased iff E[d(X1,...,X,)] = 6



6) An estimator 6 for a parameter 6 of a probability distribution is unbiased iff E[§(X

Solution 5: A biased estimator

Let X = = 3" | X;. Then

E[ég] —E [%;nl(xp)()?} - IE[
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6) An estimator 6 for a parameter 0 of a probability distribution is unbiased iff E[é(Xl, i 3

Solution 5: A biased estimator

Let X = 13" - X;. Then
n 1=1

E|6|-E [% En](xi - X)ﬂ =E [% ﬁ]l(X? - 2X,X + Xz)]

i=1

which by linearity of expectation (and distributing the sum) is

SN

=;Zn]]E[XE]—]E[

i=1

Xﬁ]lx,-] +E[X']



6) An estimator 6 for a parameter 0 of a probability distribution is unbiased iff E[é(Xl, i 3

Solution 5: A biased estimator

Let X = 13" - X;. Then
n 1=1

E|6|-E [% En](xi - X)2] =E [% ﬁ]l(Xf - 2X,X + Xz)]

i=1

which by linearity of expectation (and distributing the sum) is



6) An estimator f for a parameter # of a probability distribution is unbiased iff E[§(X1, ..., Xn)] =16

Solution 5: A biased estimator

We know that for any random variable Y, since Var (Y) = E [Y?| — (E[Y])? it holds that

E[Y?] =Var(Y) + (E[Y])%



6) An estimator 6 for a parameter # of a probability distribution is unbiased iff E[0(X1,...,X,)] = 0

Solution 5: A biased estimator

We know that for any random variable Y, since Var (Y) = E[Y?]| — (E[Y])? it holds that
E[Y?] =Var(Y) + (E[Y])%

Also, we have E[X;] = u, Var (X;) =02 Viand E [m = i, Var (7) = %2 Combining these facts,

we get

2
E[X}]=o?+4? ¥i and E|[X|=Z +42



6) An estimator 6 for a parameter # of a probability distribution is unbiased iff E[0(X1,...,X,)] = 0

Solution 5: A biased estimator

Substituting these equations into (**) we get

E[%E(Xi—f)%] = lZn]IE[XE]—IE[XZ] = 0%+ p - (%Q-FM

Thus ég Is not unbiased.



