
CSE 312: Foundations of Computing II Winter 2023

Section 8 – Solutions

Review

1) Multivariate: Discrete to Continuous:

Discrete Continuous
Joint PMF/PDF pX,Y px, yq “ P pX “ x, Y “ yq fX,Y px, yq ‰ P pX “ x, Y “ yq

Joint range/support
ΩX,Y tpx, yq P ΩX ˆ ΩY : pX,Y px, yq ą 0u tpx, yq P ΩX ˆ ΩY : fX,Y px, yq ą 0u

Joint CDF FX,Y px, yq “
ř

tďx,sďy pX,Y pt, sq FX,Y px, yq “
şx

´8

şy

´8
fX,Y pt, sq dsdt

Normalization
ř

x,y pX,Y px, yq “ 1
ş8

´8

ş8

´8
fX,Y px, yq dxdy “ 1

Marginal PMF/PDF pXpxq “
ř

y pX,Y px, yq fXpxq “
ş8

´8
fX,Y px, yqdy

Expectation ErgpX,Y qs “
ř

x,y gpx, yqpX,Y px, yq ErgpX,Y qs “
ş8

´8

ş8

´8
gpx, yqfX,Y px, yqdxdy

Independence @x, y, pX,Y px, yq “ pXpxqpY pyq @x, y, fX,Y px, yq “ fXpxqfY pyq

must have ΩX,Y “ ΩX ˆ ΩY ΩX,Y “ ΩX ˆ ΩY

Conditional PMF/PDF pX|Y px|yq “
pX,Y px,yq

pY pyq
fX|Y px|yq “

fX,Y px,yq

fY pyq

Conditional Expectation ErX|Y “ ys “
ř

x x ¨ pX|Y px|yq ErX|Y “ ys “
ş8

´8
xfX|Y px|yqdx

2) Normal (Gaussian, “bell curve”): X „ N pµ, σ2q iff X has the following probability density function:

fX pxq “
1

σ
?
2π

e´ 1
2

px´µq2

σ2 , x P R

ErXs “ µ and VarpXq “ σ2. The “standard normal” random variable is typically denoted Z and has mean
0 and variance 1: if X „ N pµ, σ2q, then Z “

X´µ
σ „ N p0, 1q. The CDF has no closed form, but we denote

the CDF of the standard normal as Φ pzq “ FZ pzq “ P pZ ď zq. Note from symmetry of the probability
density function about z “ 0 that: Φ p´zq “ 1 ´ Φpzq.

3) Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with ErXis “ µ and V arpXiq “ σ2.
Let X “

řn
i“1 Xi, which has ErXs “ nµ and V arpXq “ nσ2. Let X “ 1

n

řn
i“1 Xi, which has ErXs “ µ

and V arpXq “ σ2

n . X is called the sample mean. Then, as n Ñ 8, X approaches the normal distribution

N
´

µ, σ2

n

¯

. Standardizing, this is equivalent to Y “
X´µ
σ{

?
n

approaching N p0, 1q. Similarly, as n Ñ 8, X

approaches N pnµ, nσ2q and Y 1 “
X´nµ
σ

?
n

approaches N p0, 1q.

It is no surprise that X has mean µ and variance σ2{n – this can be done with simple calculations. The
importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is approximately
normally distributed with mean µ and variance σ2{n. Don’t forget the continuity correction, only when
X1, . . . , Xn are discrete random variables.

Here is the Standard normal table.

4) Uniform: X „ Uniformpa, bq iff X has the following probability density function:

fXpxq “

#

1
b´a if x P ra, bs

0 otherwise

ErXs “ a`b
2 and Var ppqXq “

pb´aq
2

12 . This represents each real number from ra, bs to be equally likely.
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5) Exponential: X „ Exponentialpλq iff X has the following probability density function:

fX pxq “

"

λe´λx if x ě 0
0 otherwise

ErXs “ 1
λ and VarpXq “ 1

λ2 . FX pxq “ 1 ´ e´λx for x ě 0. The exponential random variable is the
continuous analog of the geometric random variable: it represents the waiting time to the next event, where
λ ą 0 is the average number of events per unit time. Note that the exponential measures how much time
passes until the next event (any real number, continuous), whereas the Poisson measures how many events
occur in a unit of time (nonnegative integer, discrete). The exponential random variable X is memoryless:

for any s, t ě 0, P pX ą s ` t | X ą sq “ P pX ą tq

The geometric random variable also has this property.

Task 1 – Joint PMF’s

Suppose X and Y have the following joint PMF:

X/Y 1 2 3
0 0 0.2 0.1
1 0.3 0 0.4

a) Identify the range of X (ΩX), the range of Y (ΩY ), and their joint range (ΩX,Y ).

ΩX “ t0, 1u, ΩY “ t1, 2, 3u, and ΩX,Y “ tp0, 2q, p0, 3q, p1, 1q, p1, 3qu

b) Find the marginal PMF for X, pXpxq for x P ΩX .

pXp0q “
ÿ

y

pX,Y p0, yq “ 0 ` 0.2 ` 0.1 “ 0.3

pXp1q “ 1 ´ pXp0q “ 0.7

c) Find the marginal PMF for Y , pY pyq for y P ΩY .

pY p1q “
ÿ

x

pX,Y px, 1q “ 0 ` 0.3 “ 0.3

pY p2q “
ÿ

x

pX,Y px, 2q “ 0.2 ` 0 “ 0.2

pY p3q “
ÿ

x

pX,Y px, 3q “ 0.1 ` 0.4 “ 0.5

d) Are X and Y independent? Why or why not?

No, since a necessary condition is that ΩX,Y “ ΩX ˆ ΩY .

e) Find ErX3Y s.

Note that X3 “ X since X takes values in t0, 1u.

ErX3Y s “ ErXY s “
ÿ

px,yqPΩX,Y

xypX,Y px, yq “ 1 ¨ 1 ¨ 0.3 ` 1 ¨ 3 ¨ 0.4 “ 1.5
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Task 2 – Do You “Urn” to Learn More About Probability?

Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let
Xi “ 1 if the i-th ball selected is white and let it be equal to 0 otherwise. Give the joint probability mass function
of

a) X1, X2

Here is one way of defining the joint pmf of X1, X2

pX1,X2
p1, 1q “ P pX1 “ 1qP pX2 “ 1 | X1 “ 1q “

5

13
¨
4

12
“

20

156

pX1,X2
p1, 0q “ P pX1 “ 1qP pX2 “ 0 | X1 “ 1q “

5

13
¨
8

12
“

40

156

pX1,X2
p0, 1q “ P pX1 “ 0qP pX2 “ 1 | X1 “ 0q “

8

13
¨
5

12
“

40

156

pX1,X2
p0, 0q “ P pX1 “ 0qP pX2 “ 0 | X1 “ 0q “

8

13
¨
7

12
“

56

156

b) X1, X2, X3

Instead of listing out all the individual probabilities, we could write a more compact formula for
the pmf. In this problem, the denominator is always P p13, kq, where k is the number of random
variables in the joint pmf. And the numerator is P p5, iq times P p8, jq where i and j are the number
of 1s and 0s, respectively.

If we wish to compute pX1,X2,X3
px1, x2, x3q, then the number of 1s (i.e., white balls) is x1`x2`x3,

and the number of 0s (i.e., red balls) is p1 ´ x1q ` p1 ´ x2q ` p1 ´ x3q. Then, we can write the
pmf as follows:

pX1,X2,X3px1, x2, x3q “
10!

13!
¨

5!

p5 ´ x1 ´ x2 ´ x3q!
¨

8!

p5 ` x1 ` x2 ` x3q!

Task 3 – Trinomial Distribution

A generalization of the Binomial model is when there is a sequence of n independent trials, but with three
outcomes, where Ppoutcome iq “ pi for i “ 1, 2, 3 and of course p1 ` p2 ` p3 “ 1. Let Xi be the number of
times outcome i occurred for i “ 1, 2, 3, where X1 ` X2 ` X3 “ n. Find the joint PMF pX1,X2,X3

px1, x2, x3q

and specify its value for all x1, x2, x3 P R.

Are X1 and X2 independent?

Same argument as for the binomial PMF:

pX1,X2,X3px1, x2, x3q “

ˆ

n

x1, x2, x3

˙ 3
ź

i“1

pxi
i “

n!

x1!x2!x3!
px1
1 px2

2 px3
3

where x1 ` x2 ` x3 “ n and are nonnegative integers.

X1 and X2 are not independent. For example PrpX1 “ nq ą 0 and PrpX2 “ nq ą 0, but
PrpX1 “ n,X2 “ nq “ 0.

Task 4 – Successes
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Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X1 be the
number of failures preceding the first success, and let X2 be the number of failures between the first 2 successes.
Find the joint pmf of X1 and X2. Write an expression for Er

?
X1X2s. You can leave your answer in the form of

a sum.

X1 and X2 take on two particular values x1 and x2, when there are x1 failures followed by one
success, and then x2 failures followed by one success. Since the Bernoulli trials are independent the
joint pmf is

pX1,X2
px1, x2q “ p1 ´ pqx1p ¨ p1 ´ pqx2p “ p1 ´ pqx1`x2p2

for px1, x2q P ΩX1,X2
“ t0, 1, 2, . . .u ˆ t0, 1, 2, . . .u. By the definition of expectation

Er
a

X1X2s “
ÿ

px1,x2qPΩX1,X2

?
x1x2 ¨ p1 ´ pqx1`x2p2.

Task 5 – Who fails first?

Here’s a question that commonly comes up in industry, but isn’t immediately obvious. You have a disk with
probability p1 of failing each day. You have a CPU which independently has probability p2 of failing each day.
What is the probability that your disk fails before your CPU?

a) Compute the probability by summing over the relevant part of the probability space.

We model the problem by considering two Geometric random variables and deriving the probability
that one is smaller than the other. Let X1 „ Geometricpp1q. Let X2 „ Geometricpp2q. Assume
X1 and X2 are independent. We want P pX1 ă X2q.

P pX1 ă X2q “

8
ÿ

k“1

8
ÿ

k2“k`1

pX1,X2
pk, k2q

“

8
ÿ

k“1

8
ÿ

k2“k`1

pX1
pkq ¨ pX2

pk2q (by independence)

“

8
ÿ

k“1

8
ÿ

k2“k`1

p1 ´ p1qk´1p1 ¨ p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1

8
ÿ

k2“k`1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk
8
ÿ

k2“1

p1 ´ p2qk2´1p2

“

8
ÿ

k“1

p1 ´ p1qk´1p1p1 ´ p2qk ¨ 1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

b) Try to provide an intuitive reason for the answer.

4



Think about X1 and X2 in terms of coin flips. Notice that all the flips are irrelevant until the final
flip, since before the final flip, both the X1 coin and the X2 coin only yield tails. P pX1 ă X2q is
the probability that on the final flip, where by definition at least one coin comes up heads, it is the
case that the X1 coin is heads and the X2 coin is tails. So we’re looking for the probability that the
X1 coin produces a heads and the X2 coin produces a tails, conditioned on the fact that they’re
not both tails, which is derived as:

P pCoin 1 “ H& Coin 2 “ T | not both T q “
P pCoin 1 “ H& Coin 2 “ T q

P pnot both T q

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Another way to approach this problem is to use conditioning. Recall that in computing the prob-
ability of an event, we saw in Chapter 2 that it is often useful to condition on other events. We
can use this same idea in computing probabilities involving random variables, because X “ k and
Y “ y are just events.

c) Recompute the probability using the law of total probability, conditioning on the value of X1.

Again, let X1 „ Geometricpp1q and X2 „ Geometricpp2q, where X1 and X2 are independent. Then

P pX1 ă X2q “

8
ÿ

k“1

P pX1 ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pk ă X2 | X1 “ kq ¨ P pX1 “ kq

“

8
ÿ

k“1

P pX2 ą kq ¨ P pX1 “ kq (by independence)

“

8
ÿ

k“1

p1 ´ p2qk ¨ p1 ´ p1qk´1 ¨ p1

“ p1p1 ´ p2q

8
ÿ

k“1

rp1 ´ p2qp1 ´ p1qsk´1

“
p1p1 ´ p2q

1 ´ p1 ´ p2qp1 ´ p1q
.

Task 6 – Continuous joint density

The joint density of X and Y is given by

fX,Y px, yq “

#

xe´px`yq x ą 0, y ą 0

0 otherwise.

and the joint density of W and V is given by

fW,V pw, vq “

#

2 0 ă w ă v, 0 ă v ă 1

0 otherwise.

Are X and Y independent? Are W and V independent?
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For two random variables X,Y to be independent, we must have fX,Y px, yq “ fXpxqfY pyq for all
x P ΩX , y P ΩY . Let’s start with X and Y by finding their marginal PDFs. By definition, and using
the fact that the joint PDF is 0 outside of y ą 0, we get:

fXpxq “

ż 8

0

xe´px`yqdy “ e´xx

We do the same to get the PDF of Y , again over the range x ą 0:

fY pyq “

ż 8

0

xe´px`yqdx “ e´y

Since e´xx ¨ e´y “ xe´x´y “ xe´px`yq for all x, y ą 0, X and Y are independent.

We can see thatW and V are not independent simply by observing that ΩW “ p0, 1q and ΩV “ p0, 1q,
but ΩW,V is not equal to their Cartesian product. Specifically, looking at their range of fW,V pw, vq.
Graphing it with w as the ”x-axis” and v as the ”y-axis”, we see that :

The shaded area is where the joint pdf is strictly positive. Looking at it, we can see that it is not
rectangular, and therefore it is not the case that ΩW,V “ ΩW

Ś

ΩV . Remember, the joint range
being the Cartesian product of the marginal ranges is not sufficient for independence, but it is neces-
sary. Therefore, this is enough to show that they are not independent.

Task 7 – Law of Total Probability Review

a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one of
ΩU “ t0, 1

n ,
2
n , ..., 1u (notice this set has size n`1). Let H be the event that the coin comes up heads. What

is PpHq?

We can use the law of total probability, conditioning on U “ k
n for k “ 0, ..., n. Note that the

probability of getting heads conditioning on a fixed U value is U , and that the probability of U
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taking on any value in its range is 1
n`1 since it is discretely uniform.

PpHq “

n
ÿ

k“0

P
ˆ

H | U “
k

n

˙

P
ˆ

U “
k

n

˙

“

n
ÿ

k“0

k

n
¨

1

n ` 1

“
1

npn ` 1q

n
ÿ

k“0

k

“
1

npn ` 1q

npn ` 1q

2
“

1

2

b) Now suppose U „ Uniform(0,1) has the continuous uniform distribution over the interval r0, 1s. What is
PpHq?

Use the continuous version of the law of total probability: suppose E is an event, and X is a continuous
random variable with density function fXpxq. Then

PpEq “

ż 8

´8

PpE | X “ xqfXpxqdx

We do the same thing, this time using the continuous law of total probability. Note, this time, that
we’re conditioning on U “ u and taking the integral with respect to u, and that the density of U
for any value in its range is 1 because it is uniformly random.

PpHq “

ż 8

´8

PpH | U “ uqfU puqdu

We can take the integral from 0 to 1 instead because outside of that range the density of U is 0.

“

ż 1

0

PpH | U “ uqfU puqdu “

ż 1

0

u ¨ 1 du “
1

2
ru2s10 “

1

2

Task 8 – Normal Approximation of a Sum

Imagine that we are trying to transmit a signal. During the transmission, there are a hundred sources independently
making low noise. Each source produces an amount of noise that is Uniformly distributed between a “ ´1 and
b “ 1. If the total amount of noise is greater than 10 or less than ´10, then it corrupts the signal. However, if
the absolute value of the total amount of noise is under 10, then it is not a problem. What is the approximate
probability that the absolute value of the total amount of noise from the 100 signals is less than 10?

Let S be the total amount of noise. We want to find P p|S| ă 10q “ P p´10 ă S ă 10q. Let Xi be
the noise from source i. Then, we have

S “

100
ÿ

i“1

Xi.

Since the Xi are uniformly distributed, we have that ErXis “ a`b
2 “ 0 and Var pXiq “

pb´aq
2

12 “ 1
3 .

Since the Xi are i.i.d, by the Central Limit Theorem, we find that S is approximately distributed
according to N

`

0, 100 ¨ 1
3

˘

. Now, we standardize to get

Pp´10 ă S ă 10q “ P

˜

´10 ´ 0
a

100{3
ă

S ´ 0
a

100{3
ă

10 ´ 0
a

100{3

¸

“ 2Φp
?
3q ´ 1 « 0.91
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Task 9 – Confidence Intervals

Suppose that X1, . . . , Xn are i.i.d. samples from a normal distribution with unknown mean µ and variance 36.
How big does n need to be so that µ is in

rX ´ 0.11, X ` 0.11s

with probability at least 0.97?
Recall that

X “
1

n

n
ÿ

i“1

Xi.

You may use the fact that Φ´1p0.985q “ 2.17.

Our goal is to find n such that µ lies within 0.11 of X̄ 97% of the time. This is equivalent to finding
n such that the probability that µ lies outside the range is less than 3%.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Let us define Z “
X̄´µ
σ . We can solve for σ by using the Properties of Variance. Since

X̄ “
1

n

n
ÿ

i“1

Xi

we can say that

VarpX̄q “ Varp
1

n

n
ÿ

i“1

Xiq

Using the Properties of Variance and the fact that Xi’s are i.i.d., VarpX̄q “ 1
n2 ¨ n ¨ 36 “ 36

n , so
σ “ 6?

n
.

Pp|X̄ ´ µ| ą 0.11q ď 0.03

Pp|Z| ¨ σ ą 0.11q ď 0.03 rDefinition of Zs

P
ˆ

|Z| ą
0.11

6

?
n

˙

ď 0.03

P
ˆ

Z ă ´
0.11

6

?
n

˙

ď 0.015 rSymmetry of Normal Dist.s

Φ

ˆ

´
0.11

6

?
n

˙

ď 0.015 rCDF of Standard Norm.s

´
0.11

6

?
n ď ´Φ´1p0.985q

?
n ě

6 ¨ Φ´1p0.985q

0.11

n ě

ˆ

6 ¨ Φ´1p0.985q

0.11

˙2

« 14009.95

Then n must be at least 14010.
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