CSE 312: Foundations of Computing II

Section 5

Review

1) Uniform: $X \sim \text{Uniform}(a, b)$ (Unif(a, b) for short), for integers $a \leq b$, iff X has the following probability mass function:

$$p_X(k) = \frac{1}{b-a+1}, \quad k = a, a+1, \dots, b$$

 $\mathbb{E}[X] = \frac{a+b}{2}$ and $\operatorname{Var}(X) = \frac{(b-a)(b-a+2)}{12}$. This represents each integer from [a, b] being equally likely. For example, a single roll of a fair die is Uniform(1, 6).

2) Bernoulli (or indicator): $X \sim \text{Bernoulli}(p)$ (Ber(p) for short) iff X has the following probability mass function:

$$p_X(k) = \begin{cases} p, & k=1\\ 1-p, & k=0 \end{cases}$$

 $\mathbb{E}[X] = p$ and $\operatorname{Var}(X) = p(1-p)$. An example of a Bernoulli r.v. is one flip of a coin with $\mathbb{P}(\mathsf{head}) = p$.

3) Binomial: X ~ Binomial(n, p) (Bin(n, p) for short) iff X is the sum of n iid Bernoulli(p) random variables. X has probability mass function

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

 $\mathbb{E}[X] = np$ and $\operatorname{Var}(X) = np(1-p)$. An example of a Binomial r.v. is the number of heads in n independent flips of a coin with $\mathbb{P}(\operatorname{head}) = p$. Note that $\operatorname{Bin}(1,p) \equiv \operatorname{Ber}(p)$. As $n \to \infty$ and $p \to 0$, with $np = \lambda$, then $\operatorname{Bin}(n,p) \to \operatorname{Poi}(\lambda)$. If X_1, \ldots, X_n are independent Binomial r.v.'s, where $X_i \sim \operatorname{Bin}(N_i,p)$, then $X = X_1 + \ldots + X_n \sim \operatorname{Bin}(N_1 + \ldots + N_n, p)$.

4) Geometric: $X \sim \text{Geometric}(p)$ (Geo(p) for short) iff X has the following probability mass function:

$$p_X(k) = (1-p)^{k-1} p, \ k = 1, 2, \dots$$

 $\mathbb{E}[X] = \frac{1}{p}$ and $\operatorname{Var}(X) = \frac{1-p}{p^2}$. An example of a Geometric r.v. is the number of independent coin flips up to and including the first head, where $\mathbb{P}(\text{head}) = p$.

5) Poisson: $X \sim \text{Poisson}(\lambda)$ (Poi (λ) for short) iff X has the following probability mass function:

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

 $\mathbb{E}[X] = \lambda$ and $\operatorname{Var}(X) = \lambda$. An example of a Poisson r.v. is the number of people born during a particular minute, where λ is the average birth rate per minute. If X_1, \ldots, X_n are independent Poisson r.v.'s, where $X_i \sim \operatorname{Poi}(\lambda_i)$, then $X = X_1 + \ldots + X_n \sim \operatorname{Poi}(\lambda_1 + \ldots + \lambda_n)$.

6) Hypergeometric: X ~ HyperGeometric(N, K, n) (HypGeo(N, K, n) for short) iff X has the following probability mass function:

$$p_X(k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, \quad \text{where } n \leq N, \ k \leq \min(K, n) \text{ and } k \geq \max(0, n - (N - K)).$$

We have $\mathbb{E}[X] = n \frac{K}{N}$. (Var $(X) = n \cdot \frac{K(N-K)(N-n)}{N^2(2N-1)}$ which is not very memorable.) This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and N-K failures) without replacement. If we did this with replacement, then this scenario would be represented as Bin $(n, \frac{K}{N})$.

7) Negative Binomial: $X \sim \text{NegativeBinomial}(r, p)$ (NegBin(r, p) for short) iff X is the sum of r iid Geometric(p) random variables. X has probability mass function

$$p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \quad k = r, r+1, \dots$$

 $\mathbb{E}[X] = \frac{r}{p}$ and $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$. An example of a Negative Binomial r.v. is the number of independent coin flips up to and including the r^{th} head, where $\mathbb{P}(\text{head}) = p$. If X_1, \ldots, X_n are independent Negative Binomial r.v.'s, where $X_i \sim \operatorname{NegBin}(r_i, p)$, then $X = X_1 + \ldots + X_n \sim \operatorname{NegBin}(r_1 + \ldots + r_n, p)$.

Task 1 – Pond fishing

Suppose I am fishing in a pond with B blue fish, R red fish, and G green fish, where B + R + G = N. For each of the following scenarios, identify the most appropriate distribution (with parameter(s)):

- a) how many of the next 10 fish I catch are blue, if I catch and release
- b) how many fish I had to catch until my first green fish, if I catch and release
- c) how many red fish I catch in the next five minutes, if I catch on average r red fish per minute
- d) whether or not my next fish is blue
- e) how many of the next 10 fish I catch are blue, if I do not release the fish back to the pond after each catch
- f) how many fish I have to catch until I catch three red fish, if I catch and release

Task 2 – Best Coach Ever!!

You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing match is 0.2 independently of every other match.

- a) How many matches do you expect to fight until you win 10 times and what kind of random variable is this?
- b) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship, a boxer needs to win at least 10 matches in a year. What is the probability that you will go to the Championship this year and what kind of random variable is the number of matches you win out of the 12?
- c) Let p be your answer to part (b). How many times can you expect to go to the Championship in your 20 year career?

Task 3 – True or False?

Identify the following statements as true or false (true means always true). Justify your answer.

- a) For any random variable X, we have $\mathbb{E}[X^2] \ge \mathbb{E}[X]^2$.
- **b)** Let X, Y be random variables. Then, X and Y are independent if and only if $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
- c) Let $X \sim \text{Binomial}(n,p)$ and $Y \sim \text{Binomial}(m,p)$ be independent. Then, $X + Y \sim \text{Binomial}(n+m,p)$.
- d) Let $X_1, ..., X_{n+1}$ be independent Bernoulli(p) random variables. Then, $\mathbb{E}[\sum_{i=1}^n X_i X_{i+1}] = np^2$.
- e) Let $X_1, ..., X_{n+1}$ be independent Bernoulli(p) random variables. Then, $Y = \sum_{i=1}^n X_i X_{i+1} \sim \text{Binomial}(n, p^2)$.
- f) If $X \sim \text{Bernoulli}(p)$, then $nX \sim \text{Binomial}(n, p)$.
- g) If $X \sim \text{Binomial}(n, p)$, then $\frac{X}{n} \sim \text{Bernoulli}(p)$.
- h) For any two independent random variables X, Y, we have Var(X Y) = Var(X) Var(Y).

Task 4 – Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X > k + i \mid X > k) = \mathbb{P}(X > i)$ for all non-negative integers k and i. The idea is that X does not *remember* its history. Let $X \sim Geo(p)$. Show that X is memoryless.

Task 5 – Fun with Poissons

Let $X \sim Poisson(\lambda_1)$ and $Y \sim Poisson(\lambda_2)$, where X and Y are independent.

- a) Show that $X + Y \sim Poisson(\lambda_1 + \lambda_2)$. To show that a random variable is distributed according to a particular distribution, we must show that they have the same PMF. Thus, we are trying to show that $P(X + Y = n) = e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!}$
- **b)** Show that $P(X = k \mid X + Y = n) = P(W = k)$ where $W \sim Bin(n, \frac{\lambda_1}{\lambda_1 + \lambda_2})$

Task 6 – Balls and Bins

Throw n balls into m bins, where m and n are positive integers. Let X be the number of bins with exactly one ball. Compute Var(X).