Section 5

Slides by Aman Thukral and Judy Tian

Administrivia

- Pset 4 due YESTERDAY
- Homework 5 due Wednesday (Feb. 15th) 11:59 pm PDT
- It is highly recommended that you finish it within a week.
- Midterm on Monday (Feb. 13th) 9:30-10:20 am

■ See Anna's post on edstem

Review

1) Uniform: $X \sim \operatorname{Uniform}(a, b)$ (Unif (a, b) for short), for integers $a \leqslant b$, iff X has the following probability mass function:

$$
p_{X}(k)=\frac{1}{b-a+1}, \quad k=a, a+1, \ldots, b
$$

$\mathbb{E}[X]=\frac{a+b}{2}$ and $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$. This represents each integer from $[a, b]$ being equally likely. For example, a single roll of a fair die is Uniform $(1,6)$.
2) Bernoulli (or indicator): $X \sim \operatorname{Bernoulli}(p)$ ($\operatorname{Ber}(p)$ for short) iff X has the following probability mass function:

$$
p_{X}(k)=\left\{\begin{array}{cc}
p, & k=1 \\
1-p, & k=0
\end{array}\right.
$$

$\mathbb{E}[X]=p$ and $\operatorname{Var}(X)=p(1-p)$. An example of a Bernoulli r.v. is one flip of a coin with $\mathbb{P}($ head $)=p$.

Review

3) Binomial: $X \sim \operatorname{Binomial}(n, p)(\operatorname{Bin}(n, p)$ for short $)$ iff X is the sum of n iid $\operatorname{Bernoulli}(p)$ random variables. X has probability mass function

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

$\mathbb{E}[X]=n p$ and $\operatorname{Var}(X)=n p(1-p)$. An example of a Binomial r.v. is the number of heads in n independent flips of a coin with $\mathbb{P}($ head $)=p$. Note that $\operatorname{Bin}(1, p) \equiv \operatorname{Ber}(p)$. As $n \rightarrow \infty$ and $p \rightarrow 0$, with $n p=\lambda$, then $\operatorname{Bin}(n, p) \rightarrow \operatorname{Poi}(\lambda)$. If X_{1}, \ldots, X_{n} are independent Binomial r.v.'s, where $X_{i} \sim \operatorname{Bin}\left(N_{i}, p\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Bin}\left(N_{1}+\ldots+N_{n}, p\right)$.
4) Geometric: $X \sim \operatorname{Geometric}(p)(\operatorname{Geo}(p)$ for short) iff X has the following probability mass function:

$$
p_{X}(k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

$\mathbb{E}[X]=\frac{1}{p}$ and $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$. An example of a Geometric r.v. is the number of independent coin flips up to and including the first head, where $\mathbb{P}($ head $)=p$.
5) Poisson: $X \sim \operatorname{Poisson}(\lambda)(\operatorname{Poi}(\lambda)$ for short) iff X has the following probability mass function:

$$
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1, \ldots
$$

$\mathbb{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$. An example of a Poisson r.v. is the number of people born during a particular minute, where λ is the average birth rate per minute. If X_{1}, \ldots, X_{n} are independent Poisson r.v.'s, where $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{Poi}\left(\lambda_{1}+\ldots+\lambda_{n}\right)$.
6) Hypergeometric: $X \sim$ HyperGeometric (N, K, n) (HypGeo(N, K, n) for short) iff X has the following probability mass function:

$$
p_{X}(k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, \quad \text { where } n \leqslant N, k \leqslant \min (K, n) \text { and } k \geqslant \max (0, n-(N-K)) \text {. }
$$

We have $\mathbb{E}[X]=n \frac{K}{N} .\left(\operatorname{Var}(X)=n \cdot \frac{K(N-K)(N-n)}{N^{2}(2 N-1)}\right.$ which is not very memorable.) This represents the number of successes drawn, when n items are drawn from a bag with N items (K of which are successes, and $N-K$ failures) without replacement. If we did this with replacement, then this scenario would be represented as $\operatorname{Bin}\left(n, \frac{K}{N}\right)$.
7) Negative Binomial: $X \sim \operatorname{NegativeBinomial}(r, p)(\operatorname{Neg} \operatorname{Bin}(r, p)$ for short) iff X is the sum of r iid $\operatorname{Geometric}(p)$ random variables. X has probability mass function

$$
p_{X}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, \quad k=r, r+1, \ldots
$$

$\mathbb{E}[X]=\frac{r}{p}$ and $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$. An example of a Negative Binomial r.v. is the number of independent coin flips up to and including the $r^{\text {th }}$ head, where $\mathbb{P}($ head $)=p$. If X_{1}, \ldots, X_{n} are independent Negative Binomial r.v.'s, where $X_{i} \sim \operatorname{NegBin}\left(r_{i}, p\right)$, then $X=X_{1}+\ldots+X_{n} \sim \operatorname{NegBin}\left(r_{1}+\ldots+r_{n}, p\right)$.

Question 1: "Pond Fishing"

There are B blue fish, R red fish and G green fish in the pond, $B+R+G=N$. Identify the most appropriate distribution:
a) How many of the next 10 fish I catch are blue, if I catch and release.

Question 1: "Pond Fishing"

There are B blue fish, R red fish and G green fish in the pond, $B+R+G=N$. Identify the most appropriate distribution:
a) How many of the next 10 fish I catch are blue, if I catch and release.

$\operatorname{Bin}(10, B / N)$

Similar to "how many of my next 10 trials are a success"

Question 1: "Pond Fishing"

There are B blue fish, R red fish and G green fish in the pond, $B+R+G=N$. Identify the most appropriate distribution:
b) How many fish I had to catch until my first green fish, if I catch and release

Question 1: "Pond Fishing"

There are B blue fish, R red fish and G green fish in the pond, $B+R+G=N$. Identify the most appropriate distribution:
b) How many fish I had to catch until my first green fish, if I catch and release

Geo(G/N)

Similar to "how many trials until we see a success"

Question 1: "Pond Fishing"

There are B blue fish, R red fish and G green fish in the pond, $B+R+G=N$. Identify the most appropriate distribution:
d) Whether or not the next fish is blue

Question 1: "Pond Fishing"

There are B blue fish, R red fish and G green fish in the pond, $B+R+G=N$. Identify the most appropriate distribution:
d) Whether or not the next fish is blue

$\operatorname{Ber}(\mathrm{B} / \mathrm{N})$

One trial, similar to Binomial

Question 4: Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X>k+i \mid X>k)=\mathbb{P}(X>i)$ for all non-negative integers k and i. The idea is that X does not remember its history. Let $X \sim G e o(p)$. Show that X is memoryless.

Question 4: Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X>k+i \mid X>k)=\mathbb{P}(X>i)$ for all non-negative integers k and i. The idea is that X does not remember its history. Let $X \sim G e o(p)$. Show that X is memoryless.

Let's note that if $X \sim \operatorname{Geo}(p)$, then $\mathbb{P}(X>k)=\mathbb{P}$ (no successes in the first k trials $)=(1-p)^{k}$.

Question 4: Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X>k+i \mid X>k)=\mathbb{P}(X>i)$ for all non-negative integers k and i. The idea is that X does not remember its history. Let $X \sim G e o(p)$. Show that X is memoryless.

Let's note that if $X \sim \operatorname{Geo}(p)$, then $\mathbb{P}(X>k)=\mathbb{P}$ (no successes in the first k trials) $=(1-p)^{k}$.

$$
\mathbb{P}(X>k+i \mid X>k)=\frac{\mathbb{P}(X>k \mid X>k+i) \mathbb{P}(X>k+i)}{\mathbb{P}(X>k)}
$$

[Bayes Theorem]

Question 4: Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X>k+i \mid X>k)=\mathbb{P}(X>i)$ for all non-negative integers k and i. The idea is that X does not remember its history. Let $X \sim G e o(p)$. Show that X is memoryless.

Let's note that if $X \sim \operatorname{Geo}(p)$, then $\mathbb{P}(X>k)=\mathbb{P}$ (no successes in the first k trials) $=(1-p)^{k}$.

$$
\begin{aligned}
\mathbb{P}(X>k+i \mid X>k) & =\frac{\mathbb{P}(X>k \mid X>k+i) \mathbb{P}(X>k+i)}{\mathbb{P}(X>k)} & \quad \text { [Bayes Theorem] } \\
& =\frac{\mathbb{P}(X>k+i)}{\mathbb{P}(X>k)} & {[\mathbb{P}(X>k \mid X>k+i)=1] }
\end{aligned}
$$

Question 4: Memorylessness

We say that a random variable X is memoryless if $\mathbb{P}(X>k+i \mid X>k)=\mathbb{P}(X>i)$ for all non-negative integers k and i. The idea is that X does not remember its history. Let $X \sim G e o(p)$. Show that X is memoryless.

Let's note that if $X \sim \operatorname{Geo}(p)$, then $\mathbb{P}(X>k)=\mathbb{P}$ (no successes in the first k trials) $=(1-p)^{k}$.

$$
\begin{array}{rlrl}
\mathbb{P}(X>k+i \mid X>k) & =\frac{\mathbb{P}(X>k \mid X>k+i) \mathbb{P}(X>k+i)}{\mathbb{P}(X>k)} & \quad \text { [Bayes Theorem] } \\
& =\frac{\mathbb{P}(X>k+i)}{\mathbb{P}(X>k)} & & {[\mathbb{P}(X>k \mid X>k+i)=1]} \\
& =\frac{(1-p)^{k+i}}{(1-p)^{k}} & & \\
& =(1-p)^{i} & & \\
& =\mathbb{P}(X>i) &
\end{array}
$$

Midterm Practice

Very Important reminder for exam:

- Come early and find your room
- Print out cheatsheets
- Laptop should be fully charged
- Don't open other tabs on your computer during exam!!!
- One time submission

Midterm Practice

- Go to the Canvas quizzes -> Practice Midterm 2023
- Open Wolfram Alpha on another tab on your computer https://www.wolframalpha.com/
- Try Question 2

Midterm Practice

Consider a Covid test. Suppose that:

The probability that a random person tests positive given that they have Covid is p . The probability that a random person tests negative given that they do NOT have Covid is n .
The probability that a random person has Covid is c .
What is the probability that a random person has Covid given that they test positive?

Your answer should be correct to 4 decimal places. So for example, if your calculation shows that the answer is 0.02587329 , then you should enter 0.0259 .

Let C be the event that a random person has COVID and let \bar{C} be the complement event. Let T^{+}be the event that a random person tests positive and let T^{-}be the event that a random person tests negative.

Translating the statements given into probability notation, we have:

- $\operatorname{Pr}\left(T^{+} \mid C\right)=p$
- $\operatorname{Pr}\left(T^{-} \mid \bar{C}\right)=n$
- $\operatorname{Pr}(C)=c$

The goal is to find the probability that a random person has Covid given that they test positive, ie:

$$
\operatorname{Pr}\left(C \mid T^{+}\right)=? ? ?
$$

First, we apply Bayes' Theorem:

$$
\operatorname{Pr}\left(C \mid T^{+}\right)=\frac{\operatorname{Pr}\left(T^{+} \mid C\right) \operatorname{Pr}(C)}{\operatorname{Pr}\left(T^{+}\right)}
$$

Then we expand the denominator with the Law of Total Probability, conditioning on the event that the test was positive given the person had Covid or not (ie if it's a false or a true positive):

$$
\operatorname{Pr}\left(C \mid T^{+}\right)=\frac{\operatorname{Pr}\left(T^{+} \mid C\right) \operatorname{Pr}(C)}{\operatorname{Pr}\left(T^{+} \mid C\right) \operatorname{Pr}(C)+\operatorname{Pr}\left(T^{+} \mid \bar{C}\right) \operatorname{Pr}(\bar{C})}
$$

We have all components here except for $\operatorname{Pr}\left(T^{+} \mid \bar{C}\right)$ and $\operatorname{Pr}(\bar{C})$. Here we can use complementarity:

- $\operatorname{Pr}\left(T^{+} \mid \bar{C}\right)=1-\operatorname{Pr}\left(T^{-} \mid \bar{C}\right)=1-n$
- $\operatorname{Pr}(\bar{C})=1-\operatorname{Pr}(C)=1-c$

Plugging all the values in we get our final solution:

$$
\operatorname{Pr}\left(C \mid T^{+}\right)=\frac{p * c}{p * c+(1-n)(1-c)}
$$

